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This thesis is structured into thematic sections covering the process from the 
initial conception of the idea to the implementation and evaluation of the 
proposed solution. The diagram below summarizes the flow and logical sequence of
the chapters.

\section*{When Life Begins: Intelligent Monitoring and Prediction of Cardiac 
Events Using Embedded AI}

My interest in heart rate monitoring did not arise solely from academic 
curiosity. Rather, it has deep personal roots, dating back to my wife's 
pregnancy experience. The sense of responsibility and natural concern of every 
parent for the health of their unborn child led to the formulation of the 
following fundamental question:

\begin{quote}
\textbf{\textit{"How can I ensure that the fetus develops safely, even outside 
the hospital setting?"}}
\end{quote}

This question laid the foundation for the development of a portable and 
automated monitoring system, designed to operate in real time, offering 
user-friendliness along with the ability to send alerts or trigger interventions
when necessary.

The initial challenge was identifying the right technology. An extensive 
literature review was conducted in areas such as electrocardiography (ECG), 
photoplethysmography (PPG), biomedical signal acquisition systems, and 
artificial intelligence-based diagnostic algorithms.

The final system was developed using a heart rate sensor integrated into an 
Arduino-based platform. It included a PPG sensor capable of accurately recording
pulse signals, processing the data locally, and transmitting to the cloud via 
the ThingSpeak platform.
\sloppy
Data was uploaded every 30 seconds, allowing authorized healthcare providers or 
family members to remotely monitor the fetal condition. The system was optimized
for low power consumption and continuous operation, validating its practicality 
for daily use.

This application was successfully tested in real conditions during my wife's 
pregnancy, in collaboration with the General Hospital of Kalamata and the 
gynecologist Dr. Georgios Petrakos.

However, as the pregnancy progressed, new concerns arose:

\begin{quote}
\textbf{\textit{"What if complications arise in the child's cardiac function 
later in life?"}}
\end{quote}

This concern led to a new line of research focused on predictive cardiology. 



Specifically, the present study introduces an electrocardiogram (ECG) baseline 
detection system designed to predict the spontaneous termination of atrial 
fibrillation (AF). The proposed deep neural network (DNN) classifier system 
combined with Hjorth parameters extracted from ECG signals. The detection 
process consists of two stages: first, the extraction of Hjorth features and 
second, the classification of the signals using the DNN model. The clinical data
used to validate the proposed scheme were obtained from the publicly available 
database of Shandong Provincial Hospital (SPHD). The confusion matrix and 
receiver operating characteristic (ROC) analyses confirmed that the proposed 
model achieves high accuracy while maintaining low computational complexity, 
making it suitable for application in portable consumer electronic devices.
Offering materials is called help, offering knowledge and offering material is 
called function

\section{Wireless Sensor Networks and AI in IoHT: Towards Intelligent, Low-Power
and Life-Saving Systems}

In recent years, the convergence of Wireless Sensor Networks (WSNs), Artificial 
Intelligence (AI), and the Internet of Things (IoT) has transformed the 
healthcare domain, resulting in the Internet of Health Care Things (IoHCT). This
emerging paradigm enables real-time monitoring, early disease prediction, and 
adaptive responses to health-related events delivered through compact, 
low-power, and cost-effective systems %\cite{CardioGuard}.

Among these, electrocardiography (ECG) systems have experienced a remarkable 
shift. ECG monitoring has become a proactive tool in personalized medicine, 
ranging from bulky clinical machines to portable, wearable, and AI-enhanced 
sensors. AI algorithms can interpret complex ECG signals, detect arrhythmia's 
and predict spontaneous termination of atrial fibrillation (AF) as a 
life-threatening condition %\cite{CardioGuard}. 
The proposed CardioGuard system, introduces a novel detection framework using 
Hjorth parameters and deep neural networks (DNNs) to achieve a high diagnostic 
accuracy with minimal resource consumption %\cite{CardioGuard}.

Simultaneously, IoT-based architectures redefine how the health information is 
collected, processed, and accessed. Plug-and-play wearable devices seamlessly 
integrate with body-area networks and redefine remote care by offering 
effortless operation, anyone-anywhere access, and intelligent adaptability 
\cite{28}. In emergency scenarios, whether inside an ambulance or in a home-care
setting, such systems become critical life-saving enable is high lighting the 
true potential of IoT-powered healthcare.\cite{skrivanosesp8266}

This dissertation presents hardware-optimized WSN implementations for multiple 
IoHcT applications, focusing on energy efficiency, signal processing, and edge 
intelligence. These implementations have been successfully validated through 
projects such as the:

\textbf{AI-powered ECG classification systems} %\cite{CardioGuard},

\textbf{Smart fetal heart rate monitoring platforms} \cite{28,skrivanosesp8266}

and \textbf{ intelligent habitat monitoring for endangered species 
}%\cite{TurtleIoT}.



Although each use case addresses different application domains, the underlying 
architecture remains common: low-cost, scalable sensor networks integrated with 
machine learning intelligence, optimized for real-time decision-making and 
power-aware operation.

By advancing these technologies, this study aims to bridge the gap between 
academic innovation and practical deployment of intelligent IoHcT systems, 
laying the groundwork for a safer, smarter, and more responsive healthcare 
ecosystem.
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\textbf{ECG}: Electrocardiogram, heart rate, QRS complex, P wave, T wave, 
arrhythmia, cardiovascular disease.

\textbf{Neural Networks}: Deep learning, artificial intelligence, 
backpropagation, convolutional neural networks (CNN), recurrent neural networks 
(RNN), supervised learning, unsupervised learning.

\textbf{DWT}: Discrete wavelet transform, wavelet decomposition, 
multi-resolution analysis, signal processing, image compression.

\textbf{IoT}: Internet of Things, smart devices, connected devices, sensor 
networks, data management, cloud computing, real-time data analysis, smart 
homes, smart cities.

\textbf{BWSN}: Body wireless sensor networks, wireless health 
monitoring,wireless medical devices, wearable devices, telemedicine, wireless 
communication protocols.
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attack, cardiac catheterization, angiography, echo-cardiography, 
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monitoring, ultrasound, fetal health, fetal movement, fetal position.

\textbf{IOHT}: Internet of Healthcare Things, remote patient monitoring, 
telemedicine, healthcare IoT, medical devices, mHealth, eHealth, health 
informatics, connected health.
\section{Internet of Things}

The \textit{Internet of Things (IoT)} refers to an extensive network of physical
and digital devices equipped with sensors, software, and connectivity 
capabilities, allowing the collection and exchange of data in real time. The 
idea of "smart objects" has its roots as early as the 1980s with early 
applications in industrial networks, while the term "Internet of Things" was 
coined by Kevin Ashton in 1999 at the MIT Auto-ID Center \cite{ashton2009iot}.

The technological maturity of sensors, wireless communications (such as WiFi, 
Bluetooth, ZigBee), low power consumption, and IPv6 protocols have contributed 
significantly to the practical implementation of the IoT since the mid-2010s 
\cite{zanella2014internet}. Today, IoT is evolving into one of the key 



foundations of the Digital Age, with applications in areas such as smart health,
transportation, cities, energy, and Industry 4.0 \cite{atzori2017evolution}.

The core of IoT is based on a combination of technologies: embedded systems, 
cloud computing, machine learning, and security protocols for sharing data 
between heterogeneous devices. Current trends include the integration of 
artificial intelligence in IoT (\textit{AIoT}), decentralized processing with 
edge/fog computing, and specialized application in environments such as 
\textit{Internet of Medical Things (IoMT)} and \textit{Internet of 
Health-centric Things (IoHcT)} \cite{gubbi2013internet, islam2021aiiot}.

As connected infrastructure expands, the importance of interoperability, 
security, and scalability of IoT systems becomes crucial for their future 
viability.
\subsection{Internet of Health Care Things}

The application of the Internet of Medical Things (IoMT) and the broader 
Internet of Healthcare Things (IoHcT) has paved the way for the development of 
wearable low-power systems for real-time health monitoring \cite{R1}. 
Particularly in fetal health monitoring, the integration of wearable sensors, 
ECG/PPG technologies, and cloud-based data transmission systems has enabled 
continuous, non-invasive supervision of fetal development, even in remote or 
home-based environments. \cite{Mohanty2019,Yang2024}.

Despite technological advancements, current commercial solutions often fall 
short of accessibility, energy efficiency, and real-time data availability 
requirements. There is growing demand for systems that are affordable, reliable,
user-friendly, and capable of 24/7 monitoring, particularly in cases where 
direct medical care is not readily available\cite{Raj2018}.

\section{Artificial Intelligence}

Artificial Intelligence (AI) represents a transformative scientific field that 
mimics and enhances human cognitive functions through computational 
intelligence, allowing systems to perceive, reason, learn, and act autonomously 
according to \cite{marr2022}. The idea was based on the basic principle of 
training humans from the earliest stages of their lives. These artificial 
systems are rule-based, AI has evolved into data-driven architectures supported 
by neural networks and deep learning algorithms that achieve cutting-edge 
performance in areas such as medical imaging, robotics, and real-time analytics 
\cite{rajkomar2019machine, lecun2015deep}.

In recent years, AI with embedded systems and increased computational evolution 
has swept the emergence of the Internet of Things (IoT), enabling intelligent, 
distributed, and adaptive environments to be integrated into consumer 
electronics \cite{xu2014} .
One of the most effective applications of this integration lies in the Internet 
of Things in Healthcare (IoHcT), where AI-enabled medical sensors, wearables, 
and cloud-based analytics empower continuous, real-time, and patient-centric 
monitoring and diagnosis \cite{bhardwaj2022} . This paradigm shift is 
transforming traditional healthcare into a preventive, predictive, and 
personalized system.

The success of AI-based IoHcT systems relies heavily on advances in wireless 



communications, particularly the evolution from 3G/4G to 5G and beyond. 
Ultra-reliable low-latency communications (URLLC), massive machine-to-machine 
communication (mMTC), and high data throughput, as offered by 5G and the 
anticipated 6G technologies, enable seamless interaction between edge devices 
and central signal processing infrastructures \cite{haque2023, dang2020should}. 
These advances ensure timely delivery of critical health data, real-time 
decision support, and telemedicine services powered by AI models operating at 
the edge of the planet or in the cloud \cite{mansour2021}. The synergy between 
Artificial Intelligence, IoHcT and telecommunications innovations is laying the 
foundation for a next-generation smart healthcare ecosystem.

\subsection{Machine learning}

Machine Learning (ML) is a subfield of artificial intelligence that allows 
systems to learn patterns from data and improve their performance on specific 
tasks without being explicitly programmed. ML algorithms are designed to build 
models that generalize from a set of examples, making decisions or predictions 
on new, unseen data \cite{jordan2015machine, domingos2012few}.

The three main paradigms of machine learning are supervised learning, where 
algorithms are trained using labeled input output pairs, unsupervised learning, 
which focuses on discovering hidden patterns or structures in unlabeled data, 
and reinforcement learning, where agents learn to act in an environment by 
maximizing cumulative reward through trial-and-error interactions 
\cite{li2017deep, lecue2019}. With the exponential increase in the availability 
of data and computational resources, ML has become fundamental to modern 
applications, including natural language processing, computer vision, 
bioinformatics, and autonomous systems \cite{lecun2015deep, goodfellow2016deep}.
Recent developments have also introduced hybrid learning schemes, such as 
self-supervised learning and few-attempt learning, which address the limitations
of traditional machine learning (ML) in data-poor scenarios 
\cite{chen2020simple, brown2020language}. Overall, machine learning continues to
emerge as a critical technology for data-driven innovation across scientific, 
industrial, and healthcare sectors, as will be applied in this study.

\subsection{Historical Evolution of Neural Networks}

The evolution of neural networks spans over eight decades, marked by key 
theoretical milestones and technological breakthroughs. The field began with the
foundational model of McCulloch and Pitts \cite{mcculloch1943logical}, who 
introduced the neuron as a binary computational unit and described mechanisms 
such as excitatory and inhibitory signals, along with feedback loops, forming 
the logical structure of early neural computation \cite{pitts1947mathematical}. 
Their work laid the groundwork for connecting neurobiology with formal systems, 
inspiring von Neumann's subsequent exploration of computation and the 
architecture of the brain \cite{vonneumann1958computer}. Hebb’s theory of 



synaptic plasticity \cite{hebb1949organization}, known as Hebbian learning, 
further emphasized the importance of adaptive connection weights, establishing 
the conceptual basis for learning in neural models. In the 1950s and 60s, 
Rosenblatt’s perceptron \cite{rosenblatt1962principles} and the Adaline/Madaline
architectures by Widrow and Hoff \cite{widrow1960adaptive} emerged as the first 
physical and functional neural models with practical applications, although 
their limited capabilities—most notably the inability to solve non-linearly 
separable problems—were exposed by Minsky and Papert 
\cite{minsky1969perceptrons}. These limitations led to a temporary decline in 
research until the 1980s, when Hopfield \cite{hopfield1982neural} revitalized 
interest with recurrent networks, and the backpropagation algorithm formalized 
by McClelland and Rumelhart \cite{mcclelland1986parallel} opened the way for 
deep multilayer networks. This period marked the formal institutionalization of 
the field, with the emergence of dedicated conferences, journals, and 
organizations like the International Neural Network Society, led by figures such
as Grossberg, Kohonen, and Amari \cite{grossberg1988competitive, 
amari1997information}. Despite initial commercial enthusiasm, tempered growth 
followed, shifting expectations toward sustained research and application 
development \cite{lecun2015deep, schmidhuber2015deep}. Today, neural networks 
represent a robust interdisciplinary domain, driven by both the scientific 
aspiration to model cognitive processes \cite{hebb1949organization, 
hopfield1982neural} and the engineering goal of surpassing classical 
computational architectures \cite{mcculloch1943logical}.

\subsubsection{Neural Networks}
Neural networks represent a modern and rapidly evolving research field within 
the natural sciences. Over the past four decades, research and development in 
this area have intensified significantly \cite{anderson1995introduction, 
haykin1999neural, bose1996neural, lippmann1987introduction, obermeier1987time, 
hecht1988neurocomputing, kohonen1987adaptive}. The first neural network model 
proposing that neurons are the basic unit of the network was introduced in 1943 
by McCulloch and Pitts \cite{mcculloch1943logical}. In their seminal work, they 
presented for the first time the idea that a neural network consists of a 
collection of a large number of interconnected neurons, and they demonstrated 
how these neurons could operate through their connections. This is historically 
considered the first formal representation of a neural network. McCulloch and 
Pitts envisioned neurons and their connections as a model analogous to an 
electrical circuit. Notably, McCulloch was a neurophysiologist, while Pitts was 
an 18-year-old first-year mathematics student. In 1947, they advanced this model
further, focusing on pattern recognition \cite{mcculloch1947letter}. This 
progress is reflected not only in the increasing number of researchers engaged 
in the study of neural networks but also in the remarkable achievements attained
through their application, which have brought this technology to the attention 
of a broad scientific and technological audience.

Their importance is particularly pronounced in the technological sciences, as 
the fundamental principles and operational mechanisms of neural networks are 
inspired by the nervous systems of living organisms, including that of humans. 
Moreover, their use has extended far beyond the realm of biology, finding 
application in a wide array of computational problems and challenges.

In contrast to classical computing systems, neural networks aim to integrate 
elements of human cognition with advanced mathematical structures. Concepts such



as learning, memory, and forgetting, which until recently were attributed 
exclusively to human cognitive processes, have now become central components in 
the operation of neural networks. At the same time, complex mathematical 
functions, analytical methods, and computational models are employed to achieve 
their objectives.

Scientists active in this field come from a wide range of disciplines, including
medicine, engineering, physics, chemistry, mathematics, computer science, and 
electrical engineering. This interdisciplinary nature makes the field of neural 
networks one of the most intriguing and demanding areas of modern research, with
applications extending from medicine and biology to technology.

In contrast to classical computing systems, neural networks aim to integrate 
elements of human cognition with advanced mathematical structures 
\cite{haykin1999neural}. Concepts such as learning, memory, and forgetting, 
which until recently were attributed exclusively to human cognitive processes, 
have now become central components in the operation of neural networks 
\cite{goodfellow2016deep, lecun2015deep}. At the same time, complex mathematical
functions, analytical methods, and computational models are employed to achieve 
their objectives \cite{bishop1995neural}.

The fundamental idea behind the development of neural networks originates from 
the study of the nervous system in animals and humans. Living organisms possess 
nervous systems responsible for processes such as interaction with the 
environment, learning, and information storage. The brain, as the central 
structure, consists of a network of neurons that function as the core 
computational units. Neurons continuously process information through the 
exchange of electrical signals, providing the biological model upon which 
artificial networks are based. Understanding these processes is the focus of 
intensive research, aiming to achieve deeper insight into complex brain 
functions such as cognition and memory. Biological neural networks are 
extensively studied in the fields of biology and medicine, as they are 
fundamental to all living organisms (with the exception of plants) \cite{ 
gerstner2002spiking, kandel2013principles, marblestone2016toward, 
lillicrap2020backpropagation}.

Numerous efforts have been made to integrate the concept of neural systems into 
computer science. The ability of electronic computers to replicate functions of 
the human brain, such as image and speech recognition, has been a longstanding 
subject of research. Despite their substantial computational power, conventional
computers struggle to achieve the flexibility and adaptability of the human 
mind, primarily because their architecture differs significantly from that of 
biological systems. This gap has served as the foundation for the development of
artificial neural networks (ANNs), which aim to emulate the functioning of the 
human brain \cite{marblestone2016toward, lillicrap2020backpropagation}.

Artificial neural networks (ANNs) differ fundamentally from traditional 
computational systems, as they acquire knowledge through training and experience
rather than relying on strictly predefined algorithms. Their training process 
involves the presentation of data sets (patterns) for which the desired output 
is known. As the network internally adjusts its parameters to achieve correct 
input-output mappings, it develops the ability to generalize to new, unseen 
data, provided that these data share similar characteristics with the training 
examples. Although this process may appear ambitious, progress in the field over



the past thirty years has been remarkable, establishing artificial neural 
networks as a key tool in a wide range of applications \cite{goodfellow2016deep,
lecun2015deep}.

The primary purpose of an artificial neural network is to autonomously perform 
specific tasks, such as image recognition, provided it has been appropriately 
trained beforehand. Each network receives certain inputs and produces 
corresponding outputs (input output). The training process involves presenting 
the network with a set of patterns, which are representative or similar to those
the network is expected to learn. This means providing the network with input 
data for which the desired output is already known, in other words, the target 
or correct response to each input is specified. Essentially, it is akin to 
supplying the network with both the question and the correct answer. 

Using this information, the network adjusts its internal structure to match the 
input-output relationships provided during training. Once the network has 
identified an appropriate internal configuration, it can generalize to solve 
new, similar problems that it has not encountered before, even though it was not
explicitly trained on those particular examples. However, it is important to 
note that the new problems must share similar characteristics and belong to the 
same domain as the training data. While this process may appear ambitious, it 
represents the most common approach to training neural networks, although, as 
will be discussed later, various alternative training methods also exist 
\cite{goodfellow2016deep, lecun2015deep}.
Recent advances in supervised, unsupervised, and reinforcement learning have 
significantly expanded the capabilities of neural networks 
\cite{raffel2020exploring, chen2020simple, schulman2022proximal, 
badia2020agent57}.

In summary, artificial neural networks represent an innovative computational 
framework that integrates principles from biology, mathematics, and computer 
science, offering solutions to complex problems that were once considered the 
exclusive domain of human intelligence.

\subsubsection{The Human Brain as a Neural Circuit}
The human nervous system can be conceptualized as a three-stage system, where 
receptors convert stimuli into electrical signals, the neural network (brain) 
processes the information, and effectors produce appropriate responses 
\cite{arbib1987brains, bassett2017network, sporns2011networks}. Understanding 
brain function began with the pioneering work of Ramón y Cajál, who identified 
neurons as the brain’s structural units \cite{ramon1911histology, 
fields2002new}. Although neurons operate much more slowly than electronic gates,
their immense connectivity and number (~10 billion neurons and ~60 trillion 
synapses) make the brain an extraordinarily energy-efficient system 
\cite{shepherd2003synaptic, fornito2016fundamentals, bassett2017network}.

Synapses are the fundamental communication elements between neurons, possessing 
both chemical and electrical properties, while brain plasticity enables the 
creation or modification of connections \cite{eggermont2007role, 
churchland1992computational, fields2002new}. At both micro- and macro-levels, 
brain organization follows hierarchies: from synapses and microcircuits to local



and interregional neural interactions, which create mapped sensory processing 
areas in the cerebral cortex (e.g., Brodmann maps) \cite{brodal1981central, 
fornito2016fundamentals, yamins2016using}.

Despite advances in artificial neural networks, they remain primitive compared 
to the biological complexity of the brain \cite{anderson1995introduction, 
marblestone2016toward, lecun2015deep}. However, modern approaches in 
computational neuroscience, inspired by biology, continue to enrich the 
understanding and applications of artificial networks \cite{schmidhuber2015deep,
bassett2017network, fornito2016fundamentals}.

Synapses, or nerve endings, are fundamental structural and functional units 
mediating interactions between neurons \cite{shepherd2003synaptic, 
fields2002new}. The most common type of synapse is the chemical synapse, where a
presynaptic process releases a neurotransmitter that diffuses across the 
synaptic cleft and acts on the postsynaptic region 
\cite{churchland1992computational}. Thus, the synapse converts a presynaptic 
electrical signal into a chemical signal and then back into a postsynaptic 
electrical signal \cite{anderson1995introduction, sporns2011networks}.

Regarding information transmission, it is determined not by the signal type but 
by the neural pathway through which the signal passes across distinct 
communicating neurons \cite{yamins2016using, lecun2015deep}. There are two 
distinct signal states:
the resting potential (-65 mV) and the action potential (+30 mV).
To generate a signal, the neuron receives inputs that modulate its potential, 
once the threshold (-55 mV) is exceeded, it fires and produces an electrical 
signal \cite{marblestone2016toward, bassett2017network}. The signal is always 
transmitted in a predictable and stable direction \cite{fornito2016fundamentals,
sporns2011networks}.

Ultimately, one might wonder: Could the human brain be considered a bio-digital 
electronic circuit? \cite{lecun2015deep, schmidhuber2015deep, yamins2016using}

\subsubsection{Neural Networks and Computers}

Figure 1 shows the simplest possible neural network, consisting of a single 
neuron. More complex neural networks are constructed from multiple neurons 
connected together. The structure of such networks can become extremely complex,
referred to as the network architecture, which is a central topic in the study 
of artificial neural networks \cite{ beniaguev2021single}. The architecture of 
neural networks is different from that of traditional computers, which are based
on a central processing unit (CPU). Conventional computers operate serially, 
following early von Neumann principles, and can execute a set of well-defined 
instructions, such as arithmetic operations, according to an internal clock.

In contrast, neural networks do not operate serially, but rather in a manner 
similar to parallel processing, where a task is distributed across different 
parts of the network and across its neurons. Thus, neural networks are often 
described as \textit{parallel distributed processing} \cite{ wang2025hybrid} 
systems. This parallelism provides significant computational speed, as if 



multiple processors were operating simultaneously. However, the architecture of 
neural networks differs from that of parallel processors because the simple 
units of neural networks (i.e., neurons) have a large number of 
interconnections, usually far exceeding the number of neurons themselves. In 
contrast, in parallel computers, the number of processors usually exceeds the 
number of interconnections, and their overall complexity still follows the von 
Neumann model.

Neural network units are much simpler, performing only basic functions such as 
summing input signals and adjusting connection weights. In addition, neurons 
operate independently of each other without requiring synchronization. This 
feature gives neural networks robustness and fault tolerance \cite{li2025layer, 
sun2023approxabft, kim2025naper}.

In a neural network, information is distributed across many neurons, whereas in 
a conventional computer, data is stored in specific memory locations in binary 
form. When a neural network successfully solves a problem, we often do not 
understand precisely \textit{why} or \textit{how} the solution was achieved. 
Neural networks do not break a problem down into small logical parts, but solve 
it holistically, a method that is difficult for the human mind to understand 
through conventional logic. Nevertheless, the correctness of the solution can be
verified, making this technique extremely efficient.

Another novel property of neural networks is fault tolerance. This means that if
a small part of the network fails, the rest of the network continues to 
function, albeit with some minor errors \cite{beniaguev2021single, 
park2025neuromorphic}. Similarly, if part of the input data is incorrect, the 
network can still produce the correct output, albeit with minor inaccuracies. In
contrast, computers behave very differently. For example, if an error in a 
computer program results in division by zero, the system immediately stops 
execution and returns an error message, even if the rest of the program is 
flawless. A neural network, on the other hand, recognizes such an operation as 
invalid, bypasses it with some degree of error in the final output, and proceeds
to solve the problem.

\begin{table}[]
\begin{tabular}{|c|c|c|cc}
\cline{1-3}
\textbf{Topic}     & \textbf{Neural Networks}    & \textbf{Computer} &  &  \\ 
\cline{1-3}
\textbf{\begin{tabular}[c]{@{}c@{}}Process\\  synchronization\end{tabular}}  & 
\begin{tabular}[c]{@{}c@{}}With synchronous\\  operation\end{tabular}   & 
\begin{tabular}[c]{@{}c@{}}With asynchronous\\  operation\end{tabular}     &  & 
\\ \cline{1-3}
\textbf{Processing} & Parallel processing   & Serial processing &  &  \\ 
\cline{1-3}
\textbf{Programming}     & \begin{tabular}[c]{@{}c@{}}Trained with examples \\ 
by adjusting the weights \\ of their connections\end{tabular} & 
\begin{tabular}[c]{@{}c@{}}Programmed with \\ logical instructions\\  
(if-then)\end{tabular}   &  &  \\ \cline{1-3}
\textbf{ Operation structure} & \begin{tabular}[c]{@{}c@{}}Memory, networks, \\ 
and processing units coexist\end{tabular}     & 
\begin{tabular}[c]{@{}c@{}}Memory and information \\ processing are 
separated\end{tabular}     &  &  \\ \cline{1-3}



\textbf{Fault tolerance} & Fault tolerance  & No fault tolerance     &  &  \\ 
\cline{1-3}
\textbf{Self-organization}   & \begin{tabular}[c]{@{}c@{}}Self-organization 
during\\  the training process\end{tabular} & 
\begin{tabular}[c]{@{}c@{}}Entirely dependent on\\  the provided 
software\end{tabular}   &  &  \\ \cline{1-3}
\textbf{Information storage} & \begin{tabular}[c]{@{}c@{}}Information is stored 
in the\\  weights of the connections\end{tabular}  & 
\begin{tabular}[c]{@{}c@{}}Information is stored in\\  addressed memory 
locations\end{tabular} &  &  \\ \cline{1-3}
\textbf{Cycle time} & \begin{tabular}[c]{@{}c@{}}Cycle time is on the order\\  
of milliseconds (msec)\end{tabular}  & \begin{tabular}[c]{@{}c@{}}Cycle time is 
on the order of \\ nanoseconds (nsec)\end{tabular}    &  &  \\ \cline{1-3}
\end{tabular}
\caption{Comparison between Neural Networks and Computers}
\end{table}

Fault tolerance is a unique feature of neural networks that is not commonly 
found in standard computational methods. This feature can sometimes provide 
practical solutions efficiently, especially when approximate rather than exact 
answers are acceptable. However, this is not universally applicable, and it is 
important to recognize that neural networks are not a solution to all currently 
unsolved problems. In fact, there are cases where their use is not recommended.

\subsubsection{Neural Networks Learnings}

A neural network is composed of a number of elements called neurons. Each neuron
receives a set of input signals, has several possible internal states, and 
produces a single output, which is a function of the input signals (see Figure 
1). Each input is associated with a weight value, indicating the strength of the
connection between two neurons. Typically, these weights range between -1 and 1.
The meaning of the weight is analogous to a chemical bond between two atoms in a
molecule, indicating the strength of the connection between the two units 
\cite{goodfellow2016deep}.

When a neuron is activated, it computes a function over all the input data and 
compares the result to a threshold value characteristic of that neuron. If the 
computed function exceeds the threshold, the neuron produces an output, which is
passed on as input to the next neuron(s). During the training process, the only 
component that changes is the set of connection weights between neurons. The way
these weights are adjusted depends significantly on the learning method employed
\cite{lecun2015deep}.

\subsubsection*{Learning}



Weight adjustments typically follow one of three approaches: supervised 
learning, unsupervised learning, or self-supervised learning 
\cite{schmidhuber2015deep}.
\begin{figure}[t]
\centering
\includegraphics[width=0.7\columnwidth]{neural.pdf} 
\caption{Neural Network}\label{fig:Board1}
\end{figure}

\begin{itemize}
    \item \textbf{Supervised learning}: Training starts with random weight 
values, and both the input data and desired target outputs are provided to the 
network. During training, the network updates the weights to minimize the error 
between its output and the target output.
    \item \textbf{Unsupervised learning}: Input data are provided without any 
corresponding target outputs, and the network attempts to identify underlying 
structures or patterns in the data.
    \item \textbf{Self-supervised learning}: The network autonomously monitors 
and adjusts its own outputs, using feedback mechanisms to correct errors in the 
data.
\end{itemize}

In all cases, when the network stops updating its weights, training is 
considered complete. This typically occurs when the output error reaches zero or
approaches zero, indicating that the network has successfully learned the 
desired mapping or representation.

\begin{table}[h]
\centering
\begin{tabular}{|l|p{8cm}|}
\hline
\textbf{Learning Paradigm} & \textbf{Description} \\
\hline
Supervised Learning & Learns from labeled examples maps inputs to known outputs.
\\
\hline
Unsupervised Learning & Identifies patterns or clusters in input data without 
labeled outputs. \\
\hline
Self-Supervised Learning & Creates its own labels from the input data and uses 
feedback to improve predictions. \\
\hline
\end{tabular}
\caption{Summary of neural network learning paradigms}
\label{tab:learning_paradigms}
\end{table}
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\subsubsection{Types of Neural Networks}

Artificial Neural Networks (ANNs) are core tools of machine learning, inspired 
by the biological structure and function of the human brain. There are various 
types of neural networks, each designed to address specific kinds of problems 
and data. Multilayer Perceptrons (MLPs) are among the most classical and widely 
used models, where information flows unidirectionally from the input to the 
output through hidden layers \cite{shrestha2019review}. Convolutional Neural 
Networks (CNNs) are particularly efficient for image and visual data processing,
as they detect local patterns using filters and convolutional layers 
\cite{liu2017survey}. Recurrent Neural Networks (RNNs), including variants such 
as Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), are designed 
for sequential data and time-series processing, incorporating memory mechanisms 
that enable the modeling of long-term dependencies \cite{yu2019review}. 
Transformer networks represent a breakthrough in sequence modeling, particularly
for natural language processing tasks, by employing self-attention mechanisms 
that allow parallel and global dependency modeling \cite{ wang2020survey}. 
Lastly, Generative Adversarial Networks (GANs) provide a novel approach to data 
generation by training two networks—the generator and the discriminator—in a 
zero-sum game framework \cite{creswell2018generative}. Each of these 
architectures has distinct strengths and limitations, supporting the selection 
of appropriate models based on the problem domain and data type.

\begin{table*}[ht]
\centering
\scriptsize
\begin{tabular}{|p{2cm}|p{2.5cm}|p{2.5cm}|p{2.5cm}|p{2cm}|}
\hline
\textbf{Network Type} & \textbf{Description} & \textbf{Typical ECG Applications}
& \textbf{Advantages} & \textbf{Disadvantages} \\
\hline
\textbf{DNN \cite{raj2022ecg}} & Fully connected feedforward network with 
multiple dense layers & AF classification using Hjorth parameters; suitable for 
low-power devices & Simple, fast training, easy to implement & Limited sequence 
modeling capabilities \\
\hline
\textbf{CNN \cite{li2019cnn}, \cite{sundaravadivel2018smart}} & Convolutional 
filters for spatial feature extraction & Arrhythmia detection using spectrograms
or 1D ECG filters & Automatic feature learning, noise-robust & High 
computational requirements \\
\hline
\textbf{RNN \cite{khan2022lstm}} & Sequential model with internal memory state &
Heart rate variability (HRV), temporal ECG signal analysis & Captures temporal 
dependencies & Vanishing gradients, complex training \\
\hline
\textbf{LSTM \cite{farady2024ecg}} & Gated RNN for long-term dependencies & Beat
prediction, long-duration ECG signal modeling & Learns long-range patterns 
effectively & Slower training, more parameters \\
\hline
\textbf{GRU \cite{cho2014gru}} & Simplified version of LSTM with two gates & 
Low-power ECG sequence modeling & Faster and lighter than LSTM & Slightly less 



expressive than LSTM \\
\hline
\textbf{Transformer \cite{liu2024dpnet}} & Attention-based architecture without 
recurrence & Multi-lead ECG classification with attention mechanisms & High 
scalability, long-range pattern handling & Memory- and compute-intensive \\
\hline
\textbf{Autoencoder \cite{santos2021smart}} & Encoder–decoder architecture for 
representation learning & ECG denoising, unsupervised feature extraction & Data 
compression, anomaly detection & Not directly suitable for classification \\
\hline
\end{tabular}
\caption{Comparison of Neural Network Types in ECG Applications}
\end{table*}

\subsubsection{Deep learning}

Deep Neural Networks (DNNs) represent a fundamental class of machine learning 
models, characterized by their multiple hidden layers that enable the 
hierarchical extraction of complex patterns from data. These architectures have 
demonstrated high accuracy and generalization capability, particularly in 
structured data classification tasks and biomedical applications. In recent 
years, DNNs have been widely applied to physiological signal analysis, such as 
electrocardiograms (ECGs), where they facilitate the automated detection of 
cardiac abnormalities with minimal preprocessing requirements. According to Raj 
and Ray (2022), a hybrid DNN-based framework effectively distinguished atrial 
fibrillation events using Hjorth parameters derived from ECG signals, achieving 
high accuracy in low-complexity environments \cite{raj2022ecg}. Furthermore, 
emerging studies highlight the role of DNNs in edge-AI scenarios, where 
lightweight models are deployed on portable or wearable devices for real-time 
health monitoring (Liu et al., 2021) \cite{huang2024efficient}. Despite their 
advantages, DNNs are limited in modeling temporal dependencies compared to 
sequential architectures, which often necessitates hybridization with time-aware
models for time-series biomedical data.

\section{Performance Management}
Performance management is a critical organizational process that drives the 
system towards achieving optimal outcomes and enhancing overall efficiency and 
productivity. It encompasses activities such as setting clear performance goals,
continuous monitoring, providing timely feedback, and evaluating performance, 
thereby ensuring employee contributions align with strategic objectives 
\cite{de2016performance}.

Modern approaches to performance management integrate advanced technologies such
as data analytics and artificial intelligence to deliver actionable insights, 



forecast trends, and personalize development programs, thereby improving 
decision-making and workforce agility \cite{boudreau2017analytics, 
nankervis2006performance}. These innovations enable proactive identification of 
performance gaps and implementation of targeted interventions, fostering a 
culture of continuous learning and improvement \cite{pulakos2009performance}.

Overall, performance management acts as a bridge between strategic execution and
organizational development, ensuring sustainable success in a dynamic and 
competitive environment.

\subsubsection{Evaluation Techniques in Neural Network Classification: 
Emphasizing ROC and Confusion Matrix Analysis}
Performance evaluation of artificial neural networks is a critical process for 
validating the accuracy and reliability of the model. Key evaluation tools 
include the confusion matrix and the Receiver Operating Characteristic (ROC) 
curve. The confusion matrix offers a detailed representation of true versus 
predicted classes, enabling the analysis of Type I (false positives) and Type II
(false negatives) errors, as well as the calculation of metrics such as 
precision and recall \cite{swaminathan2024confusion}.
The ROC curve illustrates the trade off between the true positive rate and false
positive rate across various decision thresholds, with the area under the curve 
(AUC) serving as a measure of the model’s discriminative ability 
\cite{rumelhart1986learning}. Beyond these, other evaluation metrics like Mean 
Squared Error (MSE), Mean Absolute Error (MAE), F1 score, accuracy, and log loss
are commonly employed to comprehensively assess neural networks, depending on 
the nature of the task—classification or regression \cite{rocha2007evolution, 
patel2022evaluation}. The combined use of these methods enables a thorough 
assessment and optimization of neural network performance in modern 
applications.

\subsection{Roc Curved}
The Receiver Operating Characteristic (ROC) curve was first used, introduced 
during World War II for the analysis of radar signals, and was developed as a 
tool to assess the ability of radar operators to distinguish between enemy and 
non-enemy aircraft in their radar screens. The pioneers of Roc Curved signal 
detection theory, which was initially developed in the 1940s and 1950s by 
researchers like Norbert Wiener and Julian Bigelow respectively.\cite{72}

In the next few years, the ROC curve has become more widely known and adopted in
the fields of statistics and machine learning, as it has proven to be a valuable
tool for evaluating the performance of binary classification models.

Since then, the ROC curve has become a standard method in various fields, 
including medicine, machine learning, and signal processing, for assessing and 
visualizing the trade-off between sensitivity and specificity in classification 
tasks.\cite{72,73,74,75}

The Receiver Operating Characteristic (ROC) curve is a key tool in the realm of 
statistics and machine learning, offering a nuanced evaluation of binary 
classification models. Visually depicting the trade-off between sensitivity and 
specificity at various threshold settings, the ROC curve plots the true positive



rate (sensitivity) versus the false positive rate (1 - specificity). Each point 
on this curve represents a distinct balance between accurately identifying 
positive cases and misclassify negative cases. The area under the ROC curve was 
denoted as AUC, quantify the overall performance of the predictive model. A 
larger value in the area occupied by the AUC region indicates superior 
discrimination ability. Using this graph helps users choose the optimal 
threshold values tailored to their specific application requirements because it 
provides valuable insights into the accuracy and reliability of the model in 
distinguishing between positive and negative cases.

The ROC system has applications in various fields, serving as a critical tool 
for evaluating and visualizing the performance of binary classification models.
In many fields, especially in healthcare, ROC curves are used extensively to 
evaluate the effectiveness of diagnostic tests, thereby helping to determine 
optimal cutoffs for medical conditions.

As in machine learning, curves play a central role in providing deep insights 
into the performance of classification algorithms, helping practitioners make 
informed decisions about model thresholds. This is particularly evident when 
applied to healthcare, where the incorporation of machine learning and the use 
of an ROC curve synergistically contributes to improved decision-making 
processes.

In addition, receiver operating characteristic (ROC) curves are used in 
information retrieval systems to evaluate ranking algorithms and quality control
procedures to optimize defect detection.

 

Finally, it extends to areas such as biology and bioinformatics and even to 
areas such as criminal justice and various other fields where the precise 
distinction between positive and negative hypotheses is paramount.

The ROC curve is a valuable and adaptable tool that contributes to improved 
decision-making and model evaluation in various fields.

Based on the aforementioned evidence, the ROC curve was used individually, and 
in and on each achievement separately, playing a crucial role in the 
comprehensive theoretical validation of our results. Its implementation is a key
element that contributes substantially to the verification of results.
provide remote monitoring and diagnosis of heart conditions. 
\cite{75,78,79,80,81,82}

\subsubsection{Receiver Operating Characteristic (ROC) Curve: Theory and 
Applications}

The Receiver Operating Characteristic (ROC) curve was developed during World War
II to assess the ability of radar operators to distinguish between hostile and 
non-hostile aircraft\cite{72}. Norbert Wiener and Julian Bigelow pioneered the 
theoretical foundations for what would later become signal detection theory.  In



recent decades, ROC curves have been widely applied in statistics, biomedical 
engineering, and machine learning as vital tools for evaluating the performance 
of binary classification models\cite{72,73,74,75}. Currently, this is the 
standard in fields, such as medicine, information retrieval, and quality 
control. This information was used to validate and process the data.

\subsubsection{Understanding the ROC Curve}

The ROC curve plots the \textbf{True Positive Rate (TPR)} on the y-axis against 
the \textbf{False Positive Rate (FPR)} on the x-axis with various classification
threshold levels. This visual representation demonstrates the trade-off between 
sensitivity and specificity, and offers insight into the diagnostic or 
predictive accuracy of the model.

Each point on the ROC curve corresponds to a particular decision threshold. A 
model with excellent discrimination will have a curve that bows toward the 
top-left corner, indicating high sensitivity and a low false-positive rate. 
Conversely, a diagonal line from (0,0) to (1,1) indicates no discriminative 
ability (i.e., random guessing).

\subsubsection{Key Metrics}

\begin{table}[]
\centering
\begin{tabular}{|cc|cc|}
\hline
\multicolumn{2}{|c|}{}   & \multicolumn{2}{c|}{{\color[HTML]{000000} 
\textbf{Actual}}} \\ \cline{3-4} 
\multicolumn{2}{|c|}{\multirow{-2}{*}{}}    & 
\multicolumn{1}{c|}{{\color[HTML]{333333} Positive}} & {\color[HTML]{333333} 
Negative}  \\ \hline
\multicolumn{1}{|c|}{}    & Positive & 
\multicolumn{1}{c|}{\begin{tabular}[c]{@{}c@{}}True \\ Positive\end{tabular}}  &
\begin{tabular}[c]{@{}c@{}}False\\ Negative\end{tabular} \\ \cline{2-4} 
\multicolumn{1}{|c|}{\multirow{-2}{*}{\textbf{PREDICTED}}} & Negative & 
\multicolumn{1}{c|}{\begin{tabular}[c]{@{}c@{}}False \\ Negative\end{tabular}} &
\begin{tabular}[c]{@{}c@{}}False\\ Negative\end{tabular} \\ \hline
\end{tabular}
\end{table}
  
\begin{itemize}
  \item \textbf{True Positive Rate (TPR)}, also known as sensitivity or recall, 
is defined as:
  \[
  TPR = \frac{TP}{TP + FN}
  \]
  where $TP$ denotes true positives and $FN$ denotes false negatives. The TPR 
measures the proportion of actual positives correctly identified by the 
model\cite{82,83,85,86}.

  \item \textbf{False Positive Rate (FPR)} is given by:
  \[
  FPR = \frac{FP}{FP + TN}



  \]
  where $FP$ denotes false positives and $TN$ denotes true negatives. The FPR 
quantifies the proportion of actual negatives incorrectly identified as 
positive\cite{82,83,85,86}.
\end{itemize}

\begin{figure}[htbp]
    \centering
    \includegraphics[width=1\textwidth]{predictionauc.pdf}
   \caption{TPR and FPR.}
\end{figure}

\begin{figure}[htbp]
    \centering
    \includegraphics[width=1\textwidth]{roc_curve_plot.pdf}
   \caption{ Random Roc Curved Plot}
\end{figure}

\subsubsection{Area Under the Curve (AUC)}

The \textbf{Area Under the Curve (AUC)} quantifies the overall ability of the 
model to discriminate between positive and negative classes. AUC ranges from 0 
to 1:
\begin{itemize}
  \item AUC = 1: perfect classification
  \item AUC = 0.5: no discriminative power (equivalent to random guessing)
  \item AUC < 0.5: worse than random
\end{itemize}

AUC is:
\begin{itemize}
  \item \textbf{Threshold-invariant:} It evaluates model performance over all 
possible thresholds.
  \item \textbf{Scale-invariant:} It measures how well predictions are ranked, 
rather than their absolute values\cite{134,135}.
\end{itemize}

\subsubsection{Applications of the ROC Curve}

ROC curves are widely used, as follows:
\begin{itemize}
  \item \textbf{Healthcare:} To evaluate diagnostic tests and choose optimal 
thresholds for disease prediction.
  \item \textbf{Machine Learning:} For classifier evaluation and model 
selection.
  \item \textbf{Information Retrieval:} To assess ranking algorithms.
  \item \textbf{Bioinformatics, criminal justice, and finance:} Where binary 
classification is critical.
\end{itemize}

 

In this study, ROC curve analysis played a central role in the theoretical 
validation of our fetal heart monitoring system, which was used to verify the 



ability of the model to accurately distinguish between valid and invalid fetal 
pulse detections. The integration of ROC analysis substantially contributes to 
confirming the reliability of the measurements obtained through both ECG and PPG
signals\cite{75,78,79,80,81,82}.

\subsection{Confusion Matrix}

The confusion matrix is a fundamental tool for evaluating the performance of 
classification models, including neural networks. It organizes the correct and 
incorrect predictions for each class by distinguishing true positives, false 
positives, true negatives, and false negatives \cite{swaminathan2024confusion}. 
Through the confusion matrix, key metrics such as accuracy, recall 
(sensitivity), specificity, and F1-score can be calculated, providing a 
comprehensive assessment of the model’s performance across different scenarios 
\cite{rumelhart1986learning}. The use of the confusion matrix is especially 
critical in imbalanced class problems, where simple accuracy measurements can be
misleading. Furthermore, analyzing the confusion matrix allows targeted 
improvements, such as addressing false negatives, which can have severe 
consequences in critical applications like medical diagnosis 
\cite{patel2022evaluation}. Overall, the confusion matrix remains an 
indispensable tool for the evaluation and optimization of neural network models.

\subsubsection{Confusion Matrix and Performance Metrics}

The confusion matrix is a fundamental tool for evaluating the performance of 
classification models, especially in binary classification tasks. It is 
typically represented as:

\begin{figure}[htbp]
  \centering
  \includegraphics[width=\linewidth]{ConfusionMatrix2.pdf}
  \caption{Confusion Matrix.}
  \label{fig:myfigure2}
\end{figure}

\[
\begin{bmatrix}
\text{TP} & \text{FP} \\
\text{FN} & \text{TN}
\end{bmatrix}
\]

Where:
\begin{itemize}
    \item \textbf{TP (True Positives):} Correctly predicted positive instances.
    \item \textbf{FP (False Positives):} Incorrectly predicted positive 
instances.
    \item \textbf{FN (False Negatives):} Incorrectly predicted negative 
instances (missed positives).
    \item \textbf{TN (True Negatives):} Correctly predicted negative instances.
\end{itemize}



Using these values, we can derive key performance metrics:

\begin{itemize}
    \item \textbf{Accuracy:}
    \[
    \text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}
    \]

    \item \textbf{Precision (Positive Predictive Value):}
    \[
    \text{Precision} = \frac{TP}{TP + FP}
    \]

    \item \textbf{Recall (Sensitivity or True Positive Rate):}
    \[
    \text{Recall} = \frac{TP}{TP + FN}
    \]

    \item \textbf{F1 Score (Harmonic Mean of Precision and Recall):}
    \[
    F1 = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + 
\text{Recall}}
    \]
\end{itemize}

According to the above confusion matrix figure,the confusion matrix provided the
following values:
\[
TP = 53,\quad TN = 24,\quad FP = 1,\quad FN = 2
\]

Based on these:
\[
\text{Accuracy} = \frac{53 + 24}{53 + 24 + 1 + 2} = \frac{77}{80} = 96.25\%
\]
\[
\text{Precision} = \frac{53}{53 + 1} = \frac{53}{54} \approx 98.15\%
\]
\[
\text{Recall} = \frac{53}{53 + 2} = \frac{53}{55} \approx 96.36\%
\]
\[
F1 = 2 \cdot \frac{0.9815 \cdot 0.9636}{0.9815 + 0.9636} \approx 97.25\%
\]

These metrics confirm the system's strong classification capability in 
identifying heart disease instances accurately.

\section{Consumer Electronics}

\subsection*{Historical Background}



The development of consumer electronics (\textit{Consumer Electronics}) has its 
roots in the early 20th century, with the development of radio receivers and the
widespread use of vacuum tubes. The invention of the transistor in 1947 by 
Bardeen, Brattain, and Shockley was a milestone, enabling the creation of 
portable radios and televisions, and marking the beginning of the semiconductor 
era \cite{ieee_milestones_transistor}.

The introduction of integrated circuits (ICs) in the 1960s brought about 
significant changes, enabling the development of more advanced and affordable 
devices, such as televisions, pocket computers, and, later, video game consoles 
and personal computers \cite{ieee_milestones_ic}.

The digitization of devices, starting in the 1980s with the advent of personal 
computers, has radically changed the operation and performance of consumer 
electronics, leading to improved image and sound quality 
\cite{immink_cd_history}.

\subsection{Modern Developments}

Today, consumer electronics incorporate advanced technologies, such as 
artificial intelligence (AI), the Internet of Things (IoT), edge computing, and 
5G connectivity. These technologies enable the creation of smart devices that 
offer personalized experiences to users \cite{sundaravadivel2018smart}.

The global consumer electronics market is experiencing continuous growth, with 
an emphasis on energy-efficient, durable, and compact devices. The integration 
of AI into products such as televisions, home appliances, and wearable health 
devices is becoming increasingly widespread, responding to growing consumer 
demands \cite{marr2022}

\subsection{Integration of Advanced Technologies into Consumer Electronics}

Rapid advances in communication and computing technologies have radically 
transformed the consumer electronics sector, with particular emphasis on systems
based on the \textit{Internet of Health-Centric Things (IoHcT)}. IoHcT systems 
enable remote monitoring of physiological parameters, disease prediction through
artificial intelligence, and integration with mobile networks and cutting-edge 
computing units \cite{raj2020}.

The evolution of wireless technologies, from 3G networks to the emerging 6G, 
provides increased bandwidth, low latency, and mass device interconnection. 5G 
networks are already a key infrastructure for applications in smart cities, 
biomedical monitoring, and real-time AI computing at the edge (\textit{edge 
computing}) \cite{taleb20165G, IEEN6G2023}. The addition of WiFi 6 and WiFi 
technologies further improves stability and capacity for applications in home 
environments.

At the processing level, artificial neural networks are now being integrated 
into low-power devices using algorithms optimized to run on computers such as 
\textbf{Raspberry Pi}, \textbf{Arduino}, and \textbf{NVIDIA Jetson Nano / 



Xavier} \cite{maji2021, alajlan2022}. These platforms are widely used to develop
smart consumer applications, such as:

\begin{itemize}
\item Emotion detection with cameras and CNNs on Raspberry Pi.
\item Heart rate anomaly prediction using IoHcT sensors with ESP32 and data 
transfer over WiFi/4G.
\item Running YOLOv5 or EfficientNet neural models on Jetson Xavier for 
real-time image recognition.
\end{itemize}

The increased computing power combined with \textit{model quantization, pruning,
and edge-optimized neural inference} techniques make it possible to implement 
advanced algorithms without the need for cloud infrastructure 
\cite{plastiras2018}. Also, new 6G networking standards emphasize 
\textit{semantic communication}, reducing latency and increasing efficiency in 
consumer environments \cite{IEEN6G2023,plastiras2018}.

\section{Developments boards}
Embarking on the journey of innovation, developers encounter a plethora of 
development boards, each distinguished by their unique features and 
capabilities. Arduino boards, known for their versatility, provide accessible 
entry into the realm of embedded systems. In contrast, Raspberry Pi is a robust 
miniature computer, fueling a diverse range of projects. Introducing a novel 
platform, BeagleBone excels in real-time connectivity and processing, while 
ESP32 caters to the Internet of Things (IoT) domain with its wireless 
capabilities. The NVIDIA Jetson series, renowned for its proficiency in 
artificial intelligence and machine learning, adds another dimension to the 
landscape. Whether opting for simplicity or pushing technological boundaries, 
the panorama of development boards becomes creators to craft their innovative 
narratives, intertwining distinct threads of ingenuity.
\subsection{Arduino uno R3}
Arduino Uno R3 is a cornerstone in the realm of microcontroller development 
boards. Powered by the versatile ATmega328P microcontroller, it boasts 14 
digital input/output pins, 6 analog inputs, and a clock speed of 16 MHz. Its 
programmable nature, facilitated by the Arduino IDE, makes it accessible to both
beginners and experienced developers. Equipped with USB connectivity, it enables
seamless interface with computers for programming and power supply. The Uno R3's
simplicity, combined with its open-source nature and a vibrant community, 
renders it an ideal platform for diverse projects, spanning from simple 
prototypes to intricate electronic applications.\cite{27,55,40}

\begin{enumerate}
    \item Microcontroller: Atmel ATmega328P.
    \item Clock Speed: 16 MHz.
    \item Flash Memory: 32 KB (ATmega328P) of which 0.5 KB is used for the boot 
loader.
    \item SRAM: 2 KB.
    \item EEPROM: 1 KB.
    \item Digital I/O Pins: 14 (of which 6 provide PWM output).
    \item Analog Input Pins: 6.
    \item DC Current per I/O Pin: 20 mA.



    \item DC Current for 3.3V Pin: 50 mA.
    \item Voltage Operating Range: 5V.
    \item Input Voltage (recommended): 7-12V.
    \item Input Voltage (limits): 6-20V.
    \item Onboard USB Interface: Type B.
    \item Power Supply: External (7-12V), USB (5V), or Battery.
    \item Operating Voltage: 5V.
    \item Analog Reference Voltage: 5V.
    \item Built-in LED: 13 (connected to digital pin 13).
    \item Size: 68.6mm x 53.4mm.
    \item Weight: 25g.

\end{enumerate}
\subsection{ESP- 8266}

ESP-8266 is a compact and powerful Wi-Fi module that has revolutionized the 
development of (Internet of Things) development. Its core integrates a Tensilica
L106 32-bit microcontroller and offers a clock speed of 80 MHz. What sets the 
ESP8266 apart from its built-in Wi-Fi connectivity, making it an excellent 
choice for projects requiring wireless communication. GPIO pins for digital 
input/output and support for both I2C and SPI communication protocols provide 
versatility for various applications. The module also includes onboard memory, 
which is crucial for storing the firmware and data. Its low-cost, low-power 
consumption, and compatibility with the Arduino IDE have contributed to its 
popularity among hobbyists and professionals, enabling the creation of connected
devices and smart applications with relative ease.\cite{41,70}
\begin{enumerate}
    \item Microcontroller: Tensilica L106 32-bit microcontroller.
    \item Clock Speed: 80 MHz.
    \item Operating Voltage: 3.3V.
    \item Digital I/O Pins: 17 GPIO pins.
    \item Analog Input Pins: 1 (3.3V max input).
    \item Flash Memory: 4 MB.
    \item Wi-Fi Connectivity: Integrated 802.11 b/g/n Wi-Fi.
    \item Wi-Fi Modes: Station, SoftAP, and Station+SoftAP.
    \item Wi-Fi Security: WPA/WPA2.
    \item Networking Protocol Support: TCP/IP.
    \item Serial Communication: UART.
    \item SPI Communication: Yes.
    \item I2C Communication: Yes.
    \item GPIO Output Current: 12 mA.
    \item Operating Temperature Range: -40°C to +125°C.
    \item Power Consumption: Varies depending on operation; can be very low in 
deep sleep mode.
    \item Size: Varies depending on the specific ESP8266 module or development 
board.
    \item Programming: Can be programmed using the Arduino IDE with the help of 
the ESP8266 board package.

\end{enumerate}

\subsection{NVIDIA Jetson Xavier}
The NVIDIA Jetson Xavier is a high-performance system-on-module (SoM) designed 
specifically for artificial intelligence (AI) and deep learning applications. It



is part of the NVIDIA Jetson family, which focuses on providing powerful 
computing solutions for edge devices. Here are some key specifications of the 
NVIDIA Jetson Xavier: \cite{129}
\begin{itemize}
    \item GPU Architecture: Equipped with an integrated NVIDIA Volta GPU with 
Tensor Cores, designed for accelerated deep learning and AI processing.
    \item CPU: Octa-core ARMv8.2 64-bit CPU complex, providing high-performance 
processing capabilities.
    \item  DLA (Deep Learning Accelerator): Dedicated hardware accelerators 
designed to optimize and accelerate deep neural network inference.
    \item  Memory: 16 GB 256-bit LPDDR4x RAM, providing substantial memory 
bandwidth for handling complex AI workloads.
    \item Storage: 32 GB eMMC 5.1 onboard storage for firmware and software.
    \item Connectivity: Multiple high-speed I/O interfaces, including PCIe, USB 
3.1, and Gigabit Ethernet.
    \item Camera Inputs: Multiple MIPI CSI-2 camera interfaces for connecting 
cameras and performing computer vision tasks.
    \item Power Efficiency: Designed with a focus on energy efficiency to meet 
the requirements of edge devices.
    \item Form Factor: Compact form factor suitable for integration into various
edge devices, such as robots, drones, and intelligent cameras.
NVIDIA Jetson Xavier is widely used in applications that require real-time AI 
processing on the edge, including robotics, autonomous vehicles, and smart 
surveillance systems. Its high-performance capabilities make it a popular choice
for developers and researchers working on AI-driven projects at the 
edge.\cite{129}
\end{itemize}

\subsection{Exploring Add-On Modules for Development Boards}
Development boards often support additional modules called shields, which are 
add-on boards that provide additional functionality to the main board. Some 
examples of extra shields commonly used with development boards are as follows:
\begin{enumerate}
    \item Arduino Shields\cite{27,55,40}:
\begin{itemize}
    

    \item Motor Shield: Allows control of motors (servo, DC, or stepper) 
directly from an Arduino.

    \item Ethernet Shield:
    Ethernet connectivity is added to an Arduino for IoT projects.
    \item Bluetooth Shield: Enables wireless communication via Bluetooth.
GPS Shield: Allows integration of GPS functionality into Arduino projects.

    \item LCD Display Shield: Provides an easy way to add an LCD display to 
projects.

    \item SD Card Shield: Adds SD card storage capability to Arduino projects.
\end{itemize}
 \item Raspberry Pi HATs (Hardware Attached on Top)\cite{130}:
 \begin{itemize}
    \item Sense HAT: Equips the Raspberry Pi with environmental sensors and an 



8x8 LED matrix.
    \item PoE HAT: Enables Power over Ethernet for the Raspberry Pi.
    \item Motor Driver HAT: Allows control of motors with the Raspberry Pi.
    \item Camera Module: Attaches to the Raspberry Pi for capturing images and 
video.
    \end{itemize}
 \item NVIDIA Jetson Modules \cite{129}:
\begin{itemize}
    \item Jetson GPIO Expansion Header: Provides additional GPIO pins for Jetson
Nano.
    \item Jetson Camera Module: Connects to the MIPI CSI-2 interface for adding 
a camera to Jetson boards.
    \end{itemize}
 \item ESP8266 and ESP32 Modules:
\begin{itemize}
 \item ESP8266/ESP32 Relay Module: Enables control of high-power devices using 
relays.
 \item ESP8266/ESP32 TFT LCD Module: Adds color display to ESP8266 or ESP32 
projects.
 \item ESP8266/ESP32 Sensor Modules: Various sensor modules for temperature, 
humidity, motion, etc.\cite{41,70}

These shields and modules extend the capabilities of development boards, 
allowing users to easily integrate new features into their projects without 
requiring extensive wiring or hardware modifications. This streamlines the 
development process and makes it more accessible to professionals working on 
diverse applications.

However, it is important to keep in mind that compatibility may vary. Therefore,
it is essential to check whether a shield is compatible with a specific 
development board before integration.

\end{itemize}
\end{enumerate}

\subsection{Raspberry Pi 3}

The Raspberry Pi 3 has emerged as an outstanding development board, powered by a
quad-core ARM Cortex-A53 processor clocked at 1.2 GHz. It is a compact yet 
high-performance computer that combines affordability with versatility.

Seamlessly bridging the worlds of the Internet of Things (IoT) and 
general-purpose computing, it features built-in wireless capabilities, including
both Wi-Fi and Bluetooth, which significantly broaden its connectivity options.

An HDMI port provides high-definition video output, while four USB ports allow 
the connection of various peripherals. Additionally, the Raspberry Pi 3 includes
a 40-pin GPIO header, offering extensive I/O capabilities for hardware 
interfacing and prototyping.

Its flexibility makes it ideal for a wide range of applications—from educational
platforms and media centers to experimental projects by makers and professionals



alike. With its small form factor, low power consumption, and strong community 
support, the Raspberry Pi 3 remains a cornerstone of accessible innovation in 
embedded systems and IoT development.
 \cite{130,131}

\begin{enumerate}
    \item Processor:

Quad-core ARM Cortex-A53.
Operating Frequency: 1.2 GHz.
    \item Memory (RAM):

1 GB LPDDR2.
    \item Wireless Connectivity:

802.11n Wireless LAN (Wi-Fi).
Bluetooth 4.2.
    \item Ethernet:

10/100 BaseT Ethernet socket.
    \item USB Ports:

4 x USB 2.0 ports.
    \item Video Output:

1 x HDMI (rev 1.3 \& 1.4).
    \item Audio Output:

3.5mm jack, HDMI.
    \item GPIO Pins:

40-pin GPIO header for general-purpose input/output.
    \item Storage is provided via a microSD card slot, which is used to store 
the operating system as well as user data.
    \item Power Supply:

5V/2.5A DC via a micro USB connector.
    \item Various operating systems are supported, including Raspberry Pi OS 
(formerly known as Raspbian) and NOOBS, among others.
    \item Dimensions:

85.6mm x 56.5mm.
\end{enumerate}The Raspberry Pi 3 is a versatile and widely used single-board 
computer, known for its affordability and compatibility with a variety of 
applications, ranging from DIY projects to educational initiatives.

\subsection{Raspberry Pi 4}

The Raspberry Pi 4 is the evolution of the Raspberry Pi 3 development platform, 
redefining expectations with its significantly enhanced specifications. It is 
powered by a quad-core Cortex-A72 processor running at 1.5 GHz and is available 
in versions with 2 GB, 4 GB, or 8 GB of RAM, making it a true computing 
powerhouse.



It features dual micro-HDMI outputs that support up to 4K resolution, enabling 
high-definition displays for advanced visual applications. Additionally, USB 3.0
ports and a Gigabit Ethernet interface significantly improve data transfer and 
connectivity speeds.

The Raspberry Pi 4 retains the familiar 40-pin GPIO header, supporting hardware 
interfacing and prototyping. A notable improvement is the transition to a USB-C 
power supply, which provides a more stable and reliable power source compared to
its predecessors.

Raspberry Pi 4 remains at the forefront of low-cost computing innovation, 
powering a wide range of projects—from DIY electronics and educational tools to 
advanced applications in fields like neural networks, computer vision, facial 
recognition, and color detection.
 \cite{130,131} \cite{132}

\section{ECG and PPG Historical and Clinical Perspectives of the 
Electrocardiogram }

The electrocardiogram (ECG) represents a fundamental milestone in the evolution 
of cardiovascular diagnostics. Its genesis can be traced to the pioneering 
efforts of Dutch physiologist Willem Einthoven, who, in the late 
19\textsuperscript{th} century, developed the first practical device for 
recording cardiac electrical activity—the string galvanometer \cite{57}. This 
innovation enabled the detection and amplification of the heart’s bioelectrical 
signals using a fine conductive filament suspended within a magnetic field. 
Einthoven’s seminal publication in 1903 formally introduced the nomenclature of 
the ECG waveform components—P, Q, R, S, and T waves—thereby laying the 
foundation for modern cardiac electrophysiology. His contribution was recognized
with the Nobel Prize in Physiology or Medicine in 1924. Prior to Einthoven, 
Augustus Waller had recorded the first human ECG in 1887, and Thomas Lewis 
significantly advanced the clinical interpretation of electrocardiographic data 
\cite{57}.

Today, the ECG remains an indispensable, noninvasive diagnostic modality for the
evaluation of the heart’s electrical activity. By capturing the voltage 
fluctuations associated with cardiac depolarization and repolarization, ECG 
enables clinicians to assess heart rate, rhythm, and conduction, as well as 
detect a spectrum of pathophysiological conditions including myocardial 
ischemia, infarction, electrolyte disturbances, and structural abnormalities 
such as cardiomyopathies and hypertensive heart disease 
\cite{59,60,61,62,63,64,65,66}. Standard ECG acquisition involves the placement 
of surface electrodes on the chest and limbs, allowing for real-time waveform 
visualization in various lead configurations. Its simplicity, accessibility and 
diagnostic scope make it a vital solution in both acute and preventive 
cardiology, facilitating early detection, risk stratification and evidence-based
clinical management.

\subsection{Signal Processing and Filtering Techniques in ECG and PPG: A 



Comparative Perspective}

Electrocardiography (ECG) and photoplethysmography (PPG) are two fundamental 
non-invasive methods for monitoring cardiac function. While ECG captures the 
electrical activity of the heart using surface electrodes, PPG measures blood 
volume changes through light absorption using optical sensors. Both signals are 
susceptible to various types of noise—such as power-line interference, motion 
artifacts, and baseline wander—necessitating the application of filtering 
techniques to ensure diagnostic accuracy \cite{charlton2021ppg, khalid2023ppg}.

To reduce noise and enhance signal quality, several digital filtering methods 
are employed. Butterworth filters are widely used due to their flat frequency 
response in the passband and their minimal signal distortion, making them ideal 
for removing low- or high-frequency noise from ECG and PPG signals 
\cite{dauda2020comparative}. Chebyshev filters, particularly of the first kind, 
offer sharper roll-off characteristics at the expense of passband ripple. For 
signals with significant variability like PPG, Savitzky-Golay filters provide 
smoothing while preserving morphological features \cite{dauda2020comparative}. 
Additionally, notch filters—especially around 50/60 Hz—are implemented to 
eliminate power-line interference. More advanced approaches such as wavelet 
transforms allow for multi-resolution analysis, enabling simultaneous time and 
frequency localization of noise and signal components \cite{romero2018baseline}.

Comparatively, ECG offers superior diagnostic precision in detecting 
arrhythmias, conduction disorders, and ischemic events, while PPG is more prone 
to external disturbances such as motion, ambient light variation, and poor 
sensor contact. However, PPG excels in ease of integration into wearable systems
and supports continuous, long-term monitoring in ambulatory settings 
\cite{charlton2021ppg}.

In conclusion, effective signal processing for ECG and PPG requires tailored 
filtering techniques based on signal characteristics and application context. 
The combination of these filtering methods with modern computational tools 
enables robust feature extraction and enhances the reliability of physiological 
monitoring in intelligent healthcare environments \cite{khalid2023ppg, 
romero2018baseline}.

\subsection {Comparison of ECG and PPG-Based Systems in Biomedical Applications}
Electrocardiography (ECG) and photoplethysmography (PPG) are among the most 
widely used non-invasive biosignals for monitoring cardiovascular health. While 
ECG directly measures the electrical activity of the heart, PPG relies on the 
optical detection of volumetric changes in blood flow. Each modality offers 
unique advantages: ECG provides precise temporal features for arrhythmia 
detection, while PPG enables low-cost, wearable solutions for continuous pulse 
monitoring. The following table presents a comparative overview of the technical
features and biomedical applications of these signals.

\subsection {ECG and PPG Sensors: A Comparative Framework for Biomedical 
Monitoring}

\begin{figure}[htbp]
  \centering
  \includegraphics[width=\linewidth]{PGRST_Signal.pdf}



  \caption{PQRST Signal}
  \label{fig:myfigure}
\end{figure}

\begin{figure}[ht]
\centering
\includegraphics[width=1\textwidth]{PPG_Sens.png}
\caption{Working principle of PPG sensors~\cite{elgendi2012}.}
\label{fig:ppg_principle}
\end{figure}

Electrocardiography (ECG) and photoplethysmography (PPG) represent two 
foundational techniques in non-invasive cardiovascular monitoring, each offering
distinct advantages across clinical and wearable health contexts. ECG, widely 
regarded as the gold standard, captures the electrical depolarization of 
myocardial tissue, yielding high-fidelity information such as P, QRS, and T 
waves, PR and QT intervals, and supports detailed analysis of arrhythmias and 
heart rate variability (HRV) \cite{kaur2021, narotamo2024}. Conversely, PPG is 
an optical method that detects volumetric changes in peripheral blood flow using
light-emitting diodes and photodetectors, offering a compact, low-cost solution 
ideal for wearable applications and continuous pulse monitoring \cite{zhou2023, 
song2021}. In the context of maternal health monitoring, the PPG sensor has 
demonstrated utility in fetal heart rate tracking with the added benefit of 
enabling maternal mobility, while maintaining consistency when compared to 
ECG-derived measurements \cite{xu2024}. Technically, ECG operates in a wider 
frequency range (0.05–100 Hz) with higher sampling rates (250–1000 Hz), whereas 
PPG functions within 0.5–5 Hz and is typically sampled at 30–250 Hz 
\cite{kaur2021, peng2014}. However, PPG is more susceptible to motion artifacts,
whereas ECG requires stable electrode contact. The combined use of both 
signals—especially in IoHT (Internet of Health Things) systems—enables robust 
multimodal monitoring and diagnostic augmentation. Recent studies utilizing deep
learning and transformer-based models have shown that ECG-PPG fusion improves 
reliability in real-time health analytics and cardiovascular anomaly detection 
\cite{xu2024}. Thus, integrating these biosignals contributes significantly to 
the evolution of intelligent, adaptive, and context-aware biomedical monitoring 
systems.

\begin{table*}
[htbp]
\centering
\label{tab:ecg_ppg_comparison}
\resizebox{\linewidth}{!}{%
\begin{tabular}{|p{3.5cm}|p{5.5cm}|p{5.5cm}|}
\hline
\textbf{Feature} & \textbf{ECG} & \textbf{PPG} \\
\hline
\textbf{Signal Origin} & Electrical depolarization of the myocardium & Optical 
detection of blood volume changes \\
\hline
\textbf{Typical Frequency Range} & 0.05 – 100 Hz & 0.5 – 5 Hz \\
\hline



\textbf{Sampling Rate} & 250 – 1000 Hz \cite{kaur2021} & 30 – 250 Hz 
\cite{peng2014} \\
\hline
\textbf{Key Components} & P, QRS, T waves; PR and QT intervals 
\cite{narotamo2024} & AC/DC components; waveform morphology \cite{zhou2023} \\
\hline
\textbf{Motion Sensitivity} & Moderate (electrode contact loss) & High (movement
artifacts) \cite{peng2014} \\
\hline
\textbf{Form Factor} & Requires contact-based multi-lead setup & Easily embedded
in wearable devices \cite{xu2024} \\
\hline
\textbf{Main Applications} & Arrhythmia detection, myocardial ischemia, HRV 
analysis \cite{kaur2021} & Heart rate estimation, blood oxygen saturation, blood
pressure trends \cite{song2021} \\
\hline
\textbf{Combined Use Potential} & Multimodal biometric authentication, robust HR
monitoring \cite{xu2024} & Improves accuracy when combined with ECG 
\cite{xu2024} \\
\hline
\end{tabular}
}
\caption{Comparison of ECG and PPG in terms of technical features and 
application domains}
\end{table*}

\section{Wireless Telecommunications and ECG Signals}
\label{intro:Wireless telecommunications and ECG signals}

The convergence of wireless telecommunications and electrocardiogram (ECG) 
signal processing has enabled powerful architectures for remote and continuous 
cardiac health monitoring. Modern systems utilize wireless transmission modules 
to send real-time ECG data from patients to cloud-based platforms or remote 
monitoring centers, where signal processing techniques—such as Discrete Wavelet 
Transform (DWT)—and machine learning models are employed for advanced 
interpretation \cite{erhani2020}.

The proliferation of Internet of Things (IoT) technologies further strengthens 
this paradigm by facilitating seamless integration of biomedical sensors and 
embedded systems, allowing uninterrupted acquisition and transmission of ECG 
signals over wireless networks. This real-time connectivity provides clinicians 
with timely access to critical data and supports the automated detection of 
cardiac anomalies, such as arrhythmias or ST-elevation myocardial infarction 
(STEMI), using intelligent algorithms \cite{huda2020}.

In particular, Internet of Health Things (IoHT) infrastructures leverage neural 
networks and deep learning models to classify ECG signals with high precision, 
often outperforming traditional rule-based diagnostics \cite{gokila2023}. 
Supervised learning frameworks, trained on large annotated ECG datasets, can 
distinguish normal and pathological heart rhythms, including atrial 
fibrillation, bradycardia, and tachycardia, with clinically acceptable accuracy 
.

The advent of sixth-generation (6G) wireless communication technology is 



expected to bring disruptive advancements across various sectors, with 
healthcare—particularly smart hospitals—being a key beneficiary. This study 
explores the transformative potential of 6G in healthcare, focusing on its 
architectural foundations and enabling technologies. Through a comprehensive 
review of contemporary technological trends, integration frameworks, and 
system-level strategies, a novel smart hospital model is proposed. The model 
incorporates core innovations including the Internet of Things (IoT), artificial
intelligence (AI), blockchain, robotics, telemedicine, and advanced data 
analytics.

Findings suggest that 6G’s ultra-low latency, massive device connectivity, and 
enhanced data throughput can significantly improve patient care, real-time 
monitoring, and operational efficiency within hospital environments. However, 
despite its promising capabilities, several challenges persist, such as data 
privacy and security risks, system interoperability issues, and ethical 
concerns. The study highlights the urgent need for robust regulatory frameworks 
and standardized protocols to ensure the secure and ethical deployment of 6G 
technologies in healthcare contexts. \cite{kumar2025integrating}.  

\textit{In summary}, the integration of wireless telecommunications, IoT 
infrastructure, and artificial intelligence into ECG monitoring creates a 
transformative ecosystem for cardiovascular healthcare. Such systems promote 
patient autonomy, optimize clinical workflows, and lay the groundwork for 
intelligent, scalable, and predictive remote healthcare platforms.

\subsection{Discrete Wavelet Transform (DWT)}

Following the theoretical discussion on the significance of the Discrete Wavelet
Transform (DWT) in ECG signal analysis, we now focus on its practical 
implementation using MATLAB. MATLAB offers a powerful Wavelet Toolbox that 
provides a wide range of functions for DWT, enabling effective signal 
decomposition and feature extraction.

There are different ways to implement a DWT, but the most straightforward 
approach is to use a built-in library or toolbox. Popular environments that 
support the implementation include MATLAB's Wavelet Toolbox, Py-Wavelets in 
Python, \texttt{scipy.signal}, and \texttt{scikit-image}.

In MATLAB, the \texttt{dwt} function was used to theorize a Discrete Wavelet 
Transform. This function uses two arguments: the input signal of the desired 
wavelet type. For example, the following code performs a DWT on a signal 
\texttt{x} using the \textbf{Daubechies} wavelet of order four:

\begin{lstlisting}[language=Matlab]
[c, l] = dwt(x, 'db4');
\end{lstlisting}

Alternatively, for structured decomposition into approximation and detail 
coefficients:



\begin{lstlisting}[language=Matlab]
[cA, cD] = dwt(x, 'db4');
\end{lstlisting}

Where:
\begin{itemize}
  \item \textbf{x} is the input signal,
  \item \textbf{wname} is the wavelet name (e.g., 'db4'),
  \item \textbf{cA} and \textbf{cD} are the approximation and detail 
coefficients respectively.
\end{itemize}
\cite{102}

\subsubsection*{The DWT Decomposition Level}
The number of decomposition levels in the Discrete Wavelet Transform (DWT) 
depends on the length of the input signal and the level of detail desired. 
Mathematically, the \textbf{maximum number of decomposition levels} is given by:

\[
\log_2(N)
\]

where \(N\) denotes the length of the signal (i.e., the number of samples). 

For example, if the signal contains 256 samples, the maximum number of levels is
calculated as:

\[
\log_2(256) = 8
\]

This means the signal can be decomposed into up to 8 levels, each corresponding 
to a different frequency and time resolution.

In practice, fewer levels may be sufficient if the signals are simple. 
Otherwise, higher levels provide more detail but at a higher computational cost.
In ECG signal retrieval, wavelets such as \textbf{Daubechies (db4, db8)} are 
preferred due to their ability to detect the QRS complex, even at low levels of 
decomposition.
\cite{103,104,105}

\subsubsection*{My Project}

In our case, following the PhysioNet.org library the sampling rate is set to 128
samples per second. For a 60 second signal we have:
\[
128 \times 60 = 7,680 \text{ samples}
\]

Therefore, the theoretical maximum decomposition level is:

\[
\log_2(7680) \approx 12.9 \Rightarrow \textbf{12 levels}



\]

\subsubsection{Wavelet Level Decomposition Considerations}

Choosing the optimal decomposition level involves considering the following 
factors, which guide the appropriate configuration:
\begin{itemize}
  \item \textbf{Signal-to-noise ratio (SNR):} Higher SNR permits deeper 
decomposition.
  \item \textbf{Compression:} More levels allow better quantization and 
coefficient thresholding.
  \item \textbf{Signal characteristics:} Different signals benefit from 
decomposition at specific scales.
  \item \textbf{Computation limits:} Higher levels demand more processing power 
The commond{itemize}

Common thresholding techniques include \textit{VisuShrink}, \textit{Minmax}, and
\textit{SureShrink}. \cite{106,107,108}

\subsubsection{Wavelet Decomposition in ECG}

The application of wavelet analysis is particularly effective in ECG signal 
processing due to its ability to:

\begin{itemize}
\item Isolate the QRS complex, as well as the P and T waves.
\item Support accurate beat classification (e.g., premature ventricular 
contractions (PVCs), arrhythmias).
\item Enhance data compression and noise reduction (denoising).
\end{itemize}

\textbf{Daubechies wavelets} are especially well-suited for ECG analysis because
of their sensitivity to sharp transitions, such as those found in QRS complexes.
For optimal results, wavelet decomposition should be combined with complementary
techniques such as filtering and feature extraction, particularly in 
applications like fetal ECG extraction and interpretation.\cite{110,111,112}

\subsubsection*{Conclusion}

The Decrece Wavelet Transform (DWT) is a powerful method for ECG analysis. 
Appropriate wavelet selection (e.g., db4) and decomposition levels allow for 
efficient cardiac signal examination, enabling real-time diagnostics and 
reliable feature extraction. It should be noted that signal processing using the
discrete wavelet transform (DWT) is recommended for complex biosignals. This is 
due to the fact that it offers greater energy compression and improved 
localization in the time and frequency domains than traditional Hjorth 
parameters.
However, in the context of applications that are capable of functioning reliably
(Hjorth Parameters), and when utilising elementary signals, its employment in 
signal analysis can be considered valid. An attempt was made to implement both 
signals at the laboratory level, and it was decided to reserve the signal Hjorth
Parameters with the lower energy footprint.



\section{Hjorth Parameters for Biomedical Signal Analysis}
\label{sec:hjorth_parameters}

The Hjorth parameters constitute a compact yet powerful set of time-domain 
descriptors, initially introduced by Bo Hjorth in 1970, for the quantitative 
characterization of biomedical signals such as electroencephalogram (EEG) and 
electrocardiogram (ECG) signals~\cite{hjorth1970eeg}. These parameters include 
\textit{\textbf{Activity}}, \textit{\textbf{Mobility}}, and 
\textit{\textbf{Complexity}}, each representing distinct attributes of signal 
behavior: signal power, frequency content, and signal shape variability, 
respectively.

In contrast to frequency-based methods such as Fourier or wavelet analysis, 
Hjorth parameters offer a computationally efficient, interpretable approach that
is particularly well suited for real-time systems and embedded health-monitoring
devices~\cite{khan2025hybrid}. Their application has been extensively studied in
biosignal classification tasks, such as seizure detection, arrhythmia 
classification, and sleep-stage analysis, often serving as input features for 
machine learning and deep learning models~\cite{alawee2023advancing}.

In ECG analysis, the Hjorth descriptors help quantify transient changes in heart
dynamics, and when combined with other nonlinear or morphological features, they
enhance model performance in identifying pathological 
conditions~\cite{rizal2015}. Recent studies have demonstrated their robustness 
under noise and motion artifacts, making them ideal for Internet of Health 
Things (IoHT) applications and wearable monitoring 
systems~\cite{khan2025hybrid}.

\textbf{In summary}, the Hjorth parameters offer a valuable, low-complexity 
feature extraction tool in biomedical signal processing, with proven utility in 
both traditional and AI-driven cardiovascular analysis pipelines.

 \chapter{ Preparing Data}

\section*{Introduction}

The rapid advancement of the Internet of Things (IoT) has fundamentally 
transformed the way data is collected, transmitted, and analyzed from the 
physical environment. Sensors, development platforms, and networking 
technologies synergize to form distributed monitoring and automation systems, 
with applications across critical sectors such as healthcare, industry, 
agriculture, and smart cities \cite{garg2020iotcloud}. This section examines the
fundamental architectural components of such systems, focusing on signal 
processing stages, the role of development platforms, connectivity technologies,
and the integration of cloud services.

\subsection{Sensors and Signal Analysis in IoT}

Sensors constitute the primary data acquisition interface in IoT environments, 



converting physical quantities into electrical signals. The processing flow 
comprises the following stages: (1) raw signal acquisition, (2) preprocessing, 
(3) feature extraction, and (4) interpretation or decision-making 
\cite{goyal2021iot}. Proper signal processing is essential for optimizing the 
system’s energy efficiency and computational performance \cite{ma2019survey}.

Accurate sensor calibration, the utilization of open-source software, and the 
application of signal processing techniques—such as filtering, decoding, and 
cognitive analysis—ensure measurement reliability \cite{perera2019iot}. Data 
aggregation is typically performed at a sink node and analyzed on development 
boards according to system specifications \cite{ahmed2018iotreview}.

\subsection{Development Platforms in IoT Systems}

Microcontrollers such as the ESP32, Raspberry Pi, and Arduino constitute the 
hardware backbone of IoT systems, enabling edge-level computational 
capabilities. The ESP32 is particularly distinguished for its low power 
consumption and integrated wireless communication features 
\cite{li2022energyaware}, while Arduino is suitable for real-time control 
applications and Raspberry Pi supports complex local processing and machine 
learning workloads \cite{malik2020raspberry}.

Communication with interfaces such as LEDs, APIs, and the Internet enables both 
local and remote utilization of the data \cite{bonomi2021iotcloud}, while 
ensuring that system security, power efficiency, and firmware robustness remain 
critical considerations \cite{ahmed2018iotreview}.

\subsection{Networking Technologies for IoT Platforms}

The performance and communication range of an IoT system are determined by the 
selected networking technology. Common options include Wi-Fi, cellular 
(3G/4G/5G), Ethernet, and LPWAN protocols (e.g., LoRaWAN, NB-IoT) 
\cite{elhadi2018comparative}. Each option offers advantages and limitations 
depending on the specific application requirements \cite{valecce2020nbiot, 
centenaro2019lora}.

In the experimental configurations of this study, Wi-Fi was selected due to its 
availability, high speed, and ease of deployment, enabling reliable transmission
and cloud connectivity at minimal implementation cost \cite{zafar2018iot}.

\subsection{Cloud Integration in IoT Systems}

Connecting IoT devices to cloud infrastructures via protocols such as MQTT and 
HTTPS enables scalable storage, remote processing, and machine learning 
integration \cite{chen2020mqtt}. Platforms like ThingSpeak and AWS IoT provide 
capabilities for over-the-air (OTA) updates, monitoring, and real-time data 
analytics \cite{bonomi2021iotcloud}.

Furthermore, such systems incorporate rule engines, security mechanisms, and 
monitoring capabilities without relying on extensive local infrastructure 
\cite{garg2020iotcloud}.

\subsubsection{Artificial Intelligence Integration in IoT Applications}



Artificial Intelligence (AI) plays a critical role in signal analysis, 
particularly within biomedical domains. Following digitization and 
preprocessing, features such as Hjorth parameters, time- and frequency-domain 
statistical descriptors, and Discrete Wavelet Transform (DWT) coefficients can 
be extracted to serve as input to machine or deep learning models 
\cite{ma2019survey, oh2018automated}.

Training neural networks for biomedical tasks such as ECG classification 
requires supervised learning procedures using annotated datasets. Model weights 
are iteratively updated via the backpropagation algorithm, often in combination 
with stochastic gradient descent (SGD) or adaptive optimizers such as Adam and 
RMSprop \cite{kingma2014adam, goodfellow2016deep}. Loss functions such as binary
or categorical cross-entropy are chosen based on the classification scope 
(binary or multi-class). Regularization techniques—including dropout, L2 
penalties, and early stopping—are applied to reduce overfitting and promote 
generalization \cite{srivastava2014dropout}.

In the context of temporal signals like ECG, training efficacy can be further 
enhanced using mini-batch training, adaptive learning rate schedules, and 
signal-specific data augmentation (e.g., lead inversion, noise injection, or 
temporal stretching) \cite{hannun2019cardiologist}. K-fold cross-validation is 
widely adopted to improve robustness, especially when the training dataset is 
limited \cite{goldberger2000physiobank}. Moreover, transfer learning 
strategies—where pre-trained networks are fine-tuned on biomedical datasets—have
demonstrated efficacy in boosting accuracy while reducing training time 
\cite{rajpurkar2017cardiologist}. Hybrid approaches combining manually extracted
wavelet-based features with automatically learned representations further 
improve detection sensitivity and specificity in arrhythmia classification 
\cite{acharya2018deep}.

The article titled "A Machine Learning-Based Heart Disease Detection Scheme for 
Predicting Spontaneous Termination of Atrial Fibrillation" proposes a system for
detecting and predicting the spontaneous termination of atrial fibrillation (AF)
through ECG analysis and the use of an artificial neural network (DNN). Below I 
provide a detailed overview of the key points and details of the neural network.
The network received Hjorth parameters as input and consisted of eight hidden 
layers with 32 ReLU neurons, an additional layer with 16 neurons, 50\% dropout, 
and a sigmoid output neuron. Binary cross-entropy was used as the loss function,
and the Adam optimizer guided training. The model achieved 94\% accuracy, with 
inference latency ranging from 0.96 ms (GPU) to 550 ms (microcontroller), 
maintaining low energy consumption.

The proposed training methodology was carefully adapted to the problem’s 
complexity, data constraints, and model architecture to ensure high diagnostic 
relevance and deployment feasibility on low-cost embedded hardware.

\subsection{Conclusions}

The architecture of an IoT system is built upon the interaction of 
interconnected subsystems—sensors, development platforms, communication 
technologies, and cloud services. This study highlighted the importance of a 
holistic design approach, emphasizing reliable preprocessing, appropriate 
hardware selection, and secure, scalable, and energy-efficient communication 
infrastructure. Leveraging the computational power of edge platforms and 



artificial intelligence is anticipated to further enhance the autonomy and 
intelligence of next-generation IoT applications.

\section{Machine Learning's Versatility:
A Cross-Industry Revolution}
Machine learning has witnessed remarkable applications across diverse domains, 
revolutionizing the manner in which tasks are addressed.  It is instrumental for
diagnostic accuracy, treatment optimization, and disease prediction. 

The use of machine learning in finance is expected to increase the number of 
companies that realize the benefits of this technology.

The technology sector utilizes machine learning for recommendation systems, 
fraud detection, and natural language processing. Additionally, in autonomous 
vehicles, machine learning algorithms enhance navigation and object recognition.
The versatility of machine learning continues to reshape industries, offering 
innovative solutions and driving unprecedented advancements. \cite{113,114,115}

 \subsection{Neural Network Architectures for Effective ECG Signal Analysis
}

Various neural networks have demonstrated efficacy in the examination of ECG 
signals, and optimal selection depends on the specific task and data 
characteristics. Convolutional Neural Networks (CNNs) and Recurrent Neural 
Networks (RNN) are widely used in ECG signal processing. CNNs excel at analyzing
signals and images, autonomously learning spatial hierarchies of features, and 
achieving success in ECG classification tasks such as distinguishing between 
normal and abnormal signals or different arrhythmia's. On the other hand, RNNs, 
particularly Long Short-Term Memory networks, directly handle sequential data 
such as ECG signals. Their capacity to maintain a hidden state enables them to 
recall previous inputs, making them suitable for tasks where data order is 
crucial, including ECG arrhythmia detection, beat classification, and time 
series forecasting.\cite{112,113,114,115,116}

In addition, although less common, other architectures such as autoencoders, 
generative adversarial networks (GANs), and attention mechanisms have also been 
employed in ECG signal analysis. The optimal choice of architecture largely 
depends on the complexity of the data and the specific problem at hand. 
Frequently, a combination of multiple architectures, or a hybrid model (e.g., 
combining convolutional neural networks (CNNs) with recurrent neural networks 
(RNNs)), is used to capture both spatial and temporal features of ECG signals. 

Cross-validation and experimentation with different architectures are highly 
recommended in order to determine the most effective model for a particular use 
case.

A notable neural network architecture for ECG signal analysis is the 
one-dimensional Convolutional Neural Network (1D CNN), which is particularly 
well-suited for processing sequential biomedical data. This architecture has 
proven effective in tasks such as heartbeat classification, R-peak detection, 
and arrhythmia diagnosis. 



An example is the Deep-ECGNet, a model specifically designed for ECG signals, 
which extracts informative features to aid in the classification process. A 1D 
CNN operates on one-dimensional data sequences, applying convolutional layers 
with 1D filters to extract local features and patterns. These layers are 
followed by nonlinear activations and pooling operations to enhance feature 
representation and reduce dimensionality. 

Subsequently, fully connected layers perform classification or regression based 
on the learned features. One key advantage of 1D CNNs is their adaptability to 
input sequences of varying length, making them suitable not only for ECG 
analysis but also for applications in fields like natural language processing 
and speech recognition.
 \cite{117,118,119,120}

\subsection{Training a neural network}
When training a neural network to classify ECG signals, an important 
pre-processing step is to decompose the signals into subbands using the Discrete
Wavelet Transform (DWT). 

This decomposition separates the signal into different frequency components, 
which can be used as input features for the neural network. Each level of DWT 
decomposition corresponds to a specific scale or frequency range of the ECG 
signal, and the resulting wavelet coefficients provide valuable information 
about the signal's spectral content.

By using multiple levels of DWT decomposition, more detailed information about 
the ECG signal can be extracted. For example, the lowest level of decomposition 
(known as the approximation coefficients) captures the overall trend of the 
signal, while the higher levels (detail coefficients) represent the small-scale 
variations and rapid transitions.

Decomposing the signal into various levels allows the extraction of features at 
different resolutions, which can then be input into the neural network. This 
multi-resolution analysis can help the network learn more complex and 
fine-grained representations of the ECG signal, potentially improving its 
classification and detection performance, especially in challenging recognition 
scenarios.

It is important to note that the optimal number of decomposition levels depends 
on the characteristics of the ECG signals and the specific task being addressed.
DWT decomposition is just one step in the pre-processing pipeline for ECG signal
analysis. Other techniques, such as normalization, data augmentation, and 
feature selection, are also commonly applied to enhance the performance of 
neural networks.
\cite{121,122,123}
\subsection{Creating a Neural Network Based on ECG Signals}

Creating a neural network to process ECG signals is a multi-step process. An 
overview of the general steps is as follows:

\textbf{1. Collect and preprocess the data:}  
Obtain a dataset of ECG signals along with the corresponding labels (e.g., 



normal vs. abnormal beats). Perform essential pre-processing steps such as 
\textbf{filtering} to remove noise and \textit{resampling} to ensure a 
consistent sampling rate across signals.

\textbf{2. Define the architecture:}  
An appropriate 1D Convolutional Neural Network (CNN) architecture must be 
selected for the specific task. This may include one or more 1D convolutional 
layers, followed by pooling layers, dropout layers, and one or more fully 
connected layers to extract and process spatial features from the ECG signals.

\textbf{3. Implement the neural network:}  
Using a deep learning framework such as TensorFlow, Keras, or PyTorch, the 
selected architecture can be implemented. For example, in Keras, the 
\texttt{Sequential} API can be used to stack layers together in a 
straightforward manner \cite{121,122,123}.

\textbf{4. Train the network:}  
In this step, the preprocessed data is used to train the implemented neural 
network. Various optimization techniques have been reported in the literature to
improve convergence and generalization. For multiclass classification problems, 
categorical cross-entropy is commonly used as the loss function \cite{123}.

\textbf{5. Test the network:}  
After the training process is completed, a separate test dataset of ECG signals 
is used to evaluate the network’s performance. Metrics such as accuracy, 
F1-score, and AUC are calculated to quantitatively assess the model's 
effectiveness.

\textbf{6. Fine-tune and optimize:}  
At this stage, the most suitable architecture is selected, and hyper-parameters 
such as the learning rate, batch size, and number of layers are adjusted 
accordingly. This step aims to ensure that the network achieves the best 
possible performance.

\section{Tools for Implementing Convolutional Neural Networks}

The implementation of a Convolutional Neural Network (CNN) requires a set of 
tools and resources. The main tools typically include:

\begin{itemize}
  \item A programming language
  \item A deep learning library
  \item A dataset
  \item A computational platform
  \item A neural network visualization tool (optional)
  \item A package manager
\end{itemize}

\textbf{1. Programming language:}  
A programming language is required to develop and implement CNNs. Python is the 
most widely used language in deep learning and is supported by major libraries 
such as TensorFlow, Keras, PyTorch, and Caffe.



\textbf{2. Deep learning library:}  
Libraries such as TensorFlow, Keras, and PyTorch offer the necessary tools to 
define, train, and evaluate CNNs. Each library has its own strengths and is 
selected based on the user's preference and the specific project needs.

\textbf{3. Dataset:}  
Training and testing of CNNs require a dataset. The data must be preprocessed 
and properly formatted (e.g., CSV, HDF5) for compatibility with the selected 
deep learning framework. Public datasets, such as those available on 
PhysioNet.org, are often used in biomedical applications.

\textbf{4. Computational platform:}  
CNNs can be trained on local machines with suitable GPUs or using cloud-based 
services such as Google Colab, AWS, or Azure. For large-scale models or 
datasets, high-performance platforms like GPU clusters may be required.

\textbf{5. Neural network visualization tool:}  
Tools like TensorBoard and Visdom are useful for visualizing training metrics, 
debugging issues, and monitoring the performance of neural networks in 
real-time.

\textbf{6. Package manager:}  
Package managers like \texttt{pip} or \texttt{conda} are essential for 
installing and managing the necessary libraries and dependencies. The specific 
tools may vary based on the requirements of the project and personal 
preferences.

\subsubsection{Online Tools}

Several online platforms offer free or low-cost environments for developing and 
running CNNs, especially useful for those without access to high-end hardware:

\begin{itemize}
  \item \textbf{Google Colab:}  
  A free cloud-based platform that allows execution of Python code using 
TensorFlow and Keras, with optional GPU acceleration.

  \item \textbf{Kaggle Kernels:}  
  Provides a Jupyter Notebook environment for running Python code with built-in 
access to machine learning libraries like TensorFlow and Keras.

  \item \textbf{FloydHub:}  
  A cloud platform for training and deploying deep learning models via a 
command-line interface, supporting both CPU and GPU backends.

  \item \textbf{Microsoft Azure:}  
  Offers deep learning environments that support TensorFlow and Keras, with 
access to GPUs for accelerated training.

  \item \textbf{Amazon SageMaker (AWS):}  
  A cloud-based machine learning service that supports the training and 
deployment of models using popular libraries including TensorFlow and PyTorch.
\end{itemize}



Running CNN models on the cloud reduces the need for powerful local hardware and
eliminates the overhead of library installation and configuration. However, it 
is important to consider the potential cost of cloud services, as well as issues
related to data privacy and security before use.

\subsection{Desktop-based Tools}

The steps required to set up an environment for training a neural network on a 
personal computer are as follows.

1.  A Python distribution, such as Anaconda or Miniconda, needs to be installed 
on the computer to run a deep learning library, such as TensorFlow and Keras, 
which contain many of the necessary libraries pre-installed.

2.The installation of a deep learning library, such as TensorFlow, Keras, or 
PyTorch, using pip or conda package managers will be necessary.

3.Other necessary libraries, such as NumPy, SciPy, and Matplotlib, may need to 
be installed, depending on the specific requirements of the project.

4.The installation of a GPU driver may be necessary if the GPU is present as a 
computer to enable the utilization of its parallel processing capabilities 
during the training process.

5. These data are required for training and testing the neural network. 
Depending on the type of dataset, pre-processing, feature extraction, and 
formatting informative compatible mwit hfor the deep learning library being 
used, such as CSV, HDF5, or TFRecords, may be necessary.

6.  The model can be trained once the environment has been set up by utilizing 
the API of the deep learning library to define the network trajectory and by 
utilizing the dataset for the training of the model.

\subsection{Colab}

 

Google Colab (short for "Colaboratory") is a cloud-based platform that allows 
machine learning models to be trained and deployed by clients without requiring 
powerful local hardware. Access to Colab is available through a web browser, and
the virtual machine can be used by clients to run their code. Signing in with a 
Google Account is required to use Google Colab. After logging in, the user can 
create a new notebook to begin working on their project.

 In the notebook environment, Python code can be written and run by client, and 



documentation can be created using features such as syntax highlighting, code 
completion, and markdown cells.

Pre-installed libraries and dependencies, such as TensorFlow, Keras, and 
Py-Tool, were provided by Colab, eliminating the need for clients to install 
them. In addition, free GPUs and TPUs are available through Google Colab to 
accelerate the training process, making it a convenient option for deep learning
tasks without access to high-performance local hardware.

Data can be uploaded and downloaded to and from Colab by the client using the 
file upload and download features, or by connecting to Google Drive. Colab 
notebooks can be shared by clients for collaborative purposes.

In conclusion, Google Colab is a convenient and accessible platform for clients 
looking to develop and deploy machine learning models without requiring powerful
local hardware or complex setup processes.\cite{127}

\subsubsection{The Colab's stages }
The general stages for creating a neural network in Google Co.ab are as follows:

The necessary libraries for building and training the neural network are 
imported.\cite{127}
The dataset that will be used to train the neural network is loaded, either by 
uploading it to Colab or by loading it from an external source, such as Google 
Drive, or an online repository.
The dataset was pre-processed to prepare it for the neural network. This may 
involve tasks such as splitting the data into training and validation sets, 
normalizing the data, or converting the data into an appropriate format.
The architecture of the neural network is defined by specifying the layers of 
the neural network, including the input, hidden, and output layers. The 
activation functions, loss function, and optimizer used during the training may 
also be specified.
The neural network was trained on the training dataset by specifying the number 
of epochs and batch size for training as well as monitoring the model's 
performance on the validation set.
The performance of the model on a separate test dataset was evaluated to 
determine how well the model generalizes to the new data.
The model was fine-tuned based on the results of the evaluation by adjusting the
hyperparameters or changing the architecture.
The model is deployed to predict new data, which may involve exporting the model
to a file format that can be used by other applications or integrating the model
into an existing software system.

Several alternatives to Google Colab can be considered depending on the client's
needs and budget. Some free options include Microsoft Azure Notebooks, Jupyter 
Notebooks, and Kaggle Kernels. Microsoft Azure Notebooks are cloud-based 
platforms that allow clients to run Jupyter Notebooks in a free-hosted 
environment. Jupyter Notebook is an open-source web application that allows 
clients to create and share documents containing live code, equations, 
visualizations, and narrative text. Kaggle Kernels is a cloud-based platform 
that provides free access to compute resources, allowing clients to write and 
execute code in a Jupyter Notebook environment. On the other hand, there are 
also paid options, such as Amazon Sage Maker, IBM Watson Studio, and 
Data-bricks. These platforms provide more advanced features and better 



performance, but come at a cost. Amazon SageMaker is a fully-managed service 
that provides clients with tools to build, train, and deploy machine learning 
models at scale. IBM Watson Studio is a cloud-based data science platform that 
allows clients to build and train machine learning models using a range of tools
and frameworks. Data-bricks is a unified analytics platform that provides 
clients with a collaborative workspace for data engineering, machine learning, 
and analytics.
Analytical, 
\textbf{Amazon SageMaker:} Similar to Colab, SageMaker is a cloud-based platform
for building, training, and deploying machine-learning models. It provides a 
range of tools and services for data preparation, training, and hosting and 
supports popular machine learning frameworks such as TensorFlow, PyTorch, and 
MXNet.

IBM Watson Studio: Watson Studio is another cloud-based platform for building 
and training machine-learning models. It provides tools for data preparation, 
visualization, and model building and supports popular machine learning 
libraries such as scikit-learn, TensorFlow, and Keras.

Microsoft Azure Machine Learning: Azure Machine Learning is a cloud-based 
platform for building and deploying machine-learning models. It provides tools 
for data preparation, model building, and deployment and supports popular 
machine learning frameworks such as TensorFlow, PyTorch, and scikit-learn.

\textbf{Databricks}: Databricks is a cloud-based platform for building and 
deploying data-intensive applications, including machine learning models. It 
provides tools for data preparation, model building, and deployment and supports
popular machine learning libraries such as TensorFlow, PyTorch, and 
scikit-learn.

These platforms offer similar functionalities to Google Colab and can be used to
build and train machine-learning models in a cloud-based environment.

Google Colab is a free platform for creating and running machine learning models
in a cloud-based environment. However, there are limitations to the resources 
available, such as computing power and memory, and usage is subject to fair 
usage policies.

However, some cloud-based machine learning platforms, such as Amazon SageMaker 
and Microsoft Azure Machine Learning, offer both free and paid plans. These paid
plans typically provide access to more resources and advanced features as well 
as additional support and service-level agreements. The costs of these paid 
plans can vary depending on the level of usage and the specific features 
included.

\section{PhysioNet.org }

The PhysioNet.org Resource is a widely used resource for biomedical signal 
processing research. It provides a variety of databases and tools for analyzing 
and interpreting biomedical signals, such as electrocardiograms (ECGs), 
electroencephalograms (EEGs), and other physiological signals.
One of the main features of PhysioNet.org is the large collection of 



physiological signals that it provides, including ECG, EEG, and other signals, 
collected from healthy individuals and patients with various cardiovascular and 
neurological conditions. These signals are available to researchers and 
clinicians for the development of new diagnostic and therapeutic tools as well 
as for educational purposes.
PhysioNet.org also provides several software tools and resources for analyzing 
and interpreting these signals. For example, the WFDB Software Package is a 
widely used open-source tool for manipulating and analyzing physiological 
signals. This package contains a set of command-line tools for reading and 
writing physiological signals in the WFDB format as well as a library of 
C-language functions for working with these signals.
Another important resource provided by PhysioNet.org is PhysioBank ATM, a 
web-based tool for exploring and analyzing large collections of physiological 
signals. This tool allows users to search and browse the PhysioBank databases, 
as well as to perform basic signal processing tasks such as filtering, 
resampling, and averaging.
Additionally, PhysioNet.org organizes the annual Computing in Cardiology 
Challenge, which aims to foster innovation in the field of biomedical signal 
processing by providing a common platform for researchers to share data, 
algorithms, and results, and to evaluate the performance of different methods 
against a common set of benchmark data.
Overall, PhysioNet.org is a valuable resource for researchers, clinicians, and 
educators working in the field of biomedical signal processing, and plays a 
vital role in advancing the development of new diagnostic and therapeutic tools 
for cardiovascular and neurological conditions. The data and tools provided by 
PhysioNet.org are widely used in research, education and clinical practice in 
multiple fields such as cardiology, neurology, and critical care.\cite{128}

\section{Integrating PhysioNet.org Data into a Neural Network}

Several methods exist for incorporating data from PhysioNet.org into a neural 
network, depending on the particular dataset and the type of network utilized. 
The following general steps can be used to insert the data from PhysioNet.org 
into a neural network:

1.The dataset from PhysioNet.org must first be downloaded from the PhysioNet.org
website. The dataset is typically made available in formats such as the WFDB or 
CSV.

2.The data must be preprocessed to prepare it for input into the neural network.
This pre-processing may include normalizing the data, removing outliers, and 
dividing the dataset into training, validation, and testing sets.

3.The data may need to be converted into a specific format depending on the type
of neural network being utilized. For instance, if a convolutional neural 
network is used for image classification, the data must be converted into an 
image format.

4.The data can be input into the neural network once it is in the appropriate 
format. The input of the data can involve the use of a library, such as 
TensorFlow or Keras, to define the network architecture and train the network on
the data, depending on the type of neural network utilized.



5.Finally, the performance of the network on the test data was evaluated and 
adjustments were made as necessary.

6.It should be noted that based on the dataset, the pre-processing step can be 
complicated and requires additional steps such as feature extraction, 
segmentation, and labeling of the data. In addition, the input format of the 
data may vary based on the neural network architecture.
It is important to mention that the preprocessed data, annotations, and tools 
for data analysis are already provided by the PhysioNet.org resource; therefore,
utilizing these tools instead of pre-processing the data can be considered.

\section{Preparing Data for A Machine Learning-Based Heart Disease Detection
Scheme for Predicting Spontaneous Termination of
Atrial Fibrillation}
This study presents the development of an advanced autonomous system named A 
Machine Learning-Based Heart Disease Detection Scheme for Predicting Spontaneous
Termination of Atrial Fibrillation, designed to automatically retrieve 
electrocardiogram (ECG) data from PhysioNet and to execute a complete digital 
signal processing workflow. 
The study, focuses on enhancing early detection and intervention capabilities 
for atrial fibrillation (AF) events.

That system processes ECG signals through a sequential pipeline consisting of 
filtering, segmentation, feature extraction, and classification. The primary 
objective is to predict whether an AF episode will terminate spontaneously.

The proposed ECG analysis framework integrates a deep neural network (DNN) 
classifier with feature extraction based on Hjorth parameters. The detection 
process operates in two main stages:

Stage 1: ECG signals are preprocessed and transformed into descriptive features 
through the calculation of Hjorth parameters.

Stage 2: These extracted features are input into the DNN classifier, which 
outputs a prediction regarding the spontaneous termination of AF.

Validation of the proposed detection scheme was conducted using clinical data 
obtained from the Shandong Provincial Hospital (SPHD) database. The system’s 
performance was assessed by analyzing confusion matrices and receiver operating 
characteristic (ROC) curves, providing insight into its classification accuracy 
and diagnostic effectiveness.

Experimental results demonstrate that A Machine Learning-Based Heart Disease 
Detection Scheme for Predicting Spontaneous Termination of Atrial Fibrillation 
achieves high prediction accuracy with low computational complexity, confirming 
its potential for integration into portable consumer healthcare devices.

\subsection{ Automated AF Termination: Insights from 2004 Cardiology Challenge}

The exploration of this project, the primary phase involved meticulous data 
acquisition. Data sourcing was performed using PhysioNet.org. and the AF 



Termination Challenge database, a specialized resource tailored for the 2004 
Computers in Cardiology Challenge. This challenge, directed at enhancing the 
automated prediction of spontaneous termination of atrial fibrillation (AF), 
underscores the significance of the two-channel recording database.

Delving into the dataset, wastes were distinctly categorized into a training 
set, characterized by records labeled n*, s*, and t*, and two test sets 
encompassing records denoted as a* and b*.

The dataset encapsulates one-minute segments of atrial fibrillation, each 
featuring two ECG signals sampled at samples/second. Originating from extensive 
20-24 hour ECG recordings, these segments serve as fundamental components for 
the Computers in Cardiology Challenge 20 Integral signal to the dataset are 
automated QRS annotations, attributing normalcy to all detected beats, including
ectopic occurrences, albeit with the caveat that these annotations remain 
unchecked and may harbor minor errors.

Within the learning set, 30 participants were meticulously distributed among the
groups.

The atrial fibrillation (AF) termination prediction dataset is categorized into 
three primary groups based on the progression and resolution of AF episodes 
within long-term electrocardiogram (ECG) recordings:

Group N (n01–n10): Characterized by sustained, non-terminating AF persisting 
throughout the duration of the recording.

Group S (s01–s10): Includes episodes where AF terminates exactly one minute 
after the conclusion of the ECG recording.

Group T (t01–t10): Comprises cases where AF terminates immediately upon 
recording cessation.

Notably, Group T samples are sequentially linked to those in Group S, as they 
originate from the same prolonged ECG recordings (e.g., t01 follows s01). The 
training dataset was composed of signals from 20 subjects, evenly distributed 
between Group N and Groups S/T.

The testing subset, referred to as Set A, consists of 30 ECG segments (a01–a30) 
obtained from individuals not included in the training or secondary test sets. 
Approximately half of the samples exhibit sustained AF (Group N), while the rest
are associated with imminent AF termination (Group T). The primary 
classification objective is to distinguish which of the a01–a30 records belong 
to Group T, thereby enabling prediction of spontaneous AF 
termination~\cite{moody2004predicting}. 

Test set B encompasses 20 records (b01 to b20), featuring pairs from 10 
subjects, not part of the learning set or test set A. Each pair integrates one 
record from Group S and another from Group T, with brief intervals between some 
pairs. The sub-challenge entails identifying records affiliated with Group T.

 



\subsection{Data Organization and Preparation for MATLAB Analysis}
During the data pre processing stage, raw signal data were structured into a 
format compatible with MATLAB’s computational environment. Specifically, six 
training matrices were constructed, with dimensions of either 10 × 1280  and 
20×1280, depending on the dataset subset. In these matrices, each row represents
a single ECG record, while each column corresponds to one of the 1280 uniformly 
sampled time points. This standardized representation facilitates matrix-based 
operations and enables consistent input for subsequent signal analysis and 
classification algorithms.

The following base code is given to create hjorth parameters

\begin{lstlisting}[language=Python]
 
S = transpose(ECG1B); 
%converting each row into a table column 1280 samples 
for each patient (10) 
 
[N,K] = size(S);    
% number of electrodes K, number of samples N
 
%m0 = mean(sumsq(S,2));
d0 = S;
%m1 = mean(sumsq(diff(S,[],1),2));
d1 = diff([zeros(1,K);S ],[],1);
d2 = diff([zeros(1,K);d1],[],1);

FLAG_ReplaceNaN = 0;

if addme<2, 
 UC = 0; 
end;
if addme<3;
 if UC==0,
 
 elseif UC>=1,
  B = ones(1,UC);
  A = UC;
 elseif UC<1,
  FLAG_ReplaceNaN = 1;
  B = UC; 
  A = [1, UC-1];
 end;
else
 B = UC;    
end;

if ~UC,
 m0 = mean(d0.^2);
 m1 = mean(d1.^2);
 m2 = mean(d2.^2);
else
 if FLAG_ReplaceNaN;



 
  d0(isnan(d0)) = 0;
  d1(isnan(d1)) = 0;
  d2(isnan(d2)) = 0;
 end;
 m0 = filter)(B,A, and d0.^2)./filter(B,A,double(~isnan(d0)));
 m1 = filter(B,A,d1.^2)./filter(B,A,double(~isnan(d1)));
 m2 = filter(B,A,d2).^2)./filter(B,A,double(~isnan(d2)));
end;

ACTIVITY   = m0;     

%create a table 1*10 with name activity
MOBILITY   = sqrt(m1. /m0);  

%create a table 1*10 with name Mobility
COMPLEXITY = sqrt(m2./m1)./MOBILITY;    

%create a table 1*10 with name Complexity
 
\end{lstlisting}

\subsection*{Training and Validation of the Neural Network Using Hjorth 
Parameters}

From the PhysioNet central repository, a total of 2400 ECG-derived entries were 
retrieved and subsequently divided into two datasets: Table A with dimensions 
1920×4, and Table B with dimensions 
480×4. Table A served as the primary training set for the neural network, while 
Table B was used exclusively for post-training validation by comparing known 
outcomes with model predictions.

Table A was further subdivided, with 1536 records allocated for training and 384
for internal validation during model development. Each record in Table A 
comprises three Hjorth parameters—Activity, Mobility, and Complexity—used as 
features, and a fourth column labeled target, which designates the binary 
classification label: 0 for non-atrial fibrillation (Non-AF) and 1 for atrial 
fibrillation (AF).

After conducting 600 training iterations, the model achieved a final training 
accuracy of 95.64\%, with a validation accuracy of 93.75\%. When tested against 
Table B (480 independent samples), the model correctly classified 455 entries, 
yielding an overall classification accuracy of 94.7\%.

This approach underscores the effectiveness of using Hjorth parameters as 
discriminative features for ECG signal classification in atrial fibrillation 
detection tasks. The dataset and further methodological details are available at
the following link: [www.drhack.gr].

 
\subsection{Code Explanation}



This section provides an in-depth explanation of the Python code used for 
training and evaluating a neural network model with TensorFlow and Keras. The 
code is structured into several components, which are explained below.

\subsection{Importing Necessary Libraries}

The following libraries are imported at the beginning of the code:
\begin{itemize}
    \item \texttt{os}: Used for interacting with the operating system's file 
system.
    \item \texttt{tensorflow}: The main library used for building and training 
machine learning models.
    \item \texttt{pandas}: A library for data manipulation and analysis, 
particularly for working with data in tabular form.
    \item \texttt{keras}: A high-level neural networks API, running on top of 
TensorFlow, used for creating and training models.
    \item \texttt{TensorBoard}: A callback used for visualizing the training 
process and model metrics during the training.
\end{itemize}

\begin{verbatim}
import os
import tensorflow as tf
import pandas as pd
import keras
from keras import layers
from keras.callbacks import TensorBoard  # Import TensorBoard callback
\end{verbatim}

\subsection{Setting Up TensorBoard Logs Directory}

The following code sets the directory where TensorBoard will store the training 
logs:

\begin{verbatim}
log_dir = "./logs"
tensorboard_callback = 
TensorBoard(log_dir=log_dir, histogram_freq=1, profile_batch=0)
\end{verbatim}

This defines the \texttt{log\_dir} directory, which will hold the logs from the 
training process. The \texttt{TensorBoard} callback is used to record these logs
for visualization.

\subsection{Loading and Preparing the Data}

The code loads the dataset from a CSV file hosted on a remote server. The data 
is then stored in a Pandas DataFrame, which makes it easy to inspect and 
manipulate.

\begin{verbatim}
file_url = 
"https://drhack.gr/wp-content/uploads/2024/10/Learning_SET_1920x4.csv"
dataframe = pd.read_csv(file_url)



dataframe.shape
dataframe.head()
\end{verbatim}

The \texttt{shape} method returns the dimensions of the dataset, while 
\texttt{head()} displays the first few rows of the data for inspection.

\subsection{Splitting the Data into Training and Validation Sets}

The data is split into two sets: one for training the model and the other for 
validating it. The validation set represents 20\% of the total data, and the 
training set consists of the remaining 80\%.

\begin{verbatim}
val_dataframe = dataframe.sample(frac=0.2, random_state=1337)
train_dataframe = dataframe.drop(val_dataframe.index)

print(
    f"Using {len(train_dataframe)} samples for training "
    f"and {len(val_dataframe)} for validation"
)
\end{verbatim}

This split ensures that the model is evaluated on unseen data, improving its 
generalization ability.

\subsection{Converting DataFrames to TensorFlow Datasets}

The function \texttt{dataframe\_to\_dataset} converts the Pandas DataFrame into 
a TensorFlow dataset, which can be efficiently used for training a neural 
network model.

\begin{verbatim}
def dataframe_to_dataset(dataframe):
    dataframe = dataframe.copy()
    labels = dataframe.pop("target")
    ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), labels))
    ds = ds.shuffle(buffer_size=len(dataframe))
    return ds

train_ds = dataframe_to_dataset(train_dataframe)
val_ds = dataframe_to_dataset(val_dataframe)
\end{verbatim}

\texttt{train\_ds} and \texttt{val\_ds} are the training and validation 
datasets, respectively. The data is shuffled to ensure randomness during 
training.

\subsection{Feature Normalization}

The code normalizes the numerical features using the Keras 
\texttt{Normalization} layer, which scales the data to have a mean of zero and a
standard deviation of one.



\begin{verbatim}
def encode_numerical_feature(feature, name, dataset):
    normalizer = layers.Normalization()
    feature_ds = dataset.map(lambda x, y: x[name])
    feature_ds = feature_ds.map(lambda x: tf.expand_dims(x, -1))
    normalizer.adapt(feature_ds)
    encoded_feature = normalizer(feature)
    return encoded_feature
\end{verbatim}

Normalization helps improve the training process by ensuring that all features 
are on a similar scale, making it easier for the model to converge.

\subsection{Building the Neural Network Model}

The neural network model is defined using the Keras API. It consists of multiple
layers, including dense layers with ReLU activation functions and a dropout 
layer for regularization.

\begin{verbatim}
HjorthBPM1 = keras.Input(shape=(1,), name="HjorthBPM1")
HjorthBPM2 = keras.Input(shape=(1,), name="HjorthBPM2")
HjorthBPM3 = keras.Input(shape=(1,), name="HjorthBPM3")

all_inputs = [HjorthBPM1, HjorthBPM2, HjorthBPM3]

HjorthBPM1_encoded =
encode_numerical_feature(HjorthBPM1, "HjorthBPM1", train_ds)
HjorthBPM2_encoded = 
encode_numerical_feature(HjorthBPM2, "HjorthBPM2", train_ds)
HjorthBPM3_encoded = 
encode_numerical_feature(HjorthBPM3, "HjorthBPM3", train_ds)

all_features = 
layers.concatenate([HjorthBPM1_encoded,
HjorthBPM2_encoded, HjorthBPM3_encoded])

x = layers.Dense(32, activation="relu")(all_features)
x = layers.Dense(32, activation="relu")(x)
x = layers.Dropout(0.5)(x)
output = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(all_inputs, output)
model.compile("adam", "binary_crossentropy", metrics=["accuracy"])
\end{verbatim}

Here, the model is designed to take three input features (HjorthBPM1, 
HjorthBPM2, and HjorthBPM3). It passes through several dense layers, with ReLU 
activation functions and a dropout layer for regularization. The output layer 
uses the sigmoid activation function, suitable for binary classification tasks.

\subsection{Training the Model}

The model is trained using the \texttt{fit} method, with the training data, 



validation data, and TensorBoard callback to visualize the training process.

\begin{verbatim}
model.fit(train_ds, epochs=600, 
validation_data=val_ds, callbacks=[tensorboard_callback])
\end{verbatim}

This code trains the model for 600 epochs, with the validation data used to 
assess the model's performance at each epoch.

\subsection{Making Predictions}

After training, the model is used to make predictions on new data. The 
predictions are then stored and processed for further evaluation.

\begin{verbatim}
predictions = model.predict(input_dict)
predictions_list.append(100 * predictions[0][0])
\end{verbatim}

For each input sample, the model outputs a prediction, which is then converted 
into a percentage and stored in the list \texttt{predictions\_list}.

\subsection{Rounding the Predictions}

To make the predictions more interpretable, they are rounded to the nearest 
integer (either 0 or 1), which corresponds to the two possible classes for 
binary classification.

\begin{verbatim}
rounded_array = np.round(predictions_array)
\end{verbatim}

This step is useful for presenting the final results as binary outcomes.

\subsection{Visualizing with TensorBoard}

Finally, TensorBoard is used to visualize the training process. The following 
commands load and start TensorBoard:

\begin{verbatim}
%load_ext tensorboard
%tensorboard --logdir=./logs
\end{verbatim}

This command opens the TensorBoard interface, where various metrics such as loss
and accuracy are displayed during training.

\section{Conclusion}

This code outlines the process of building, training, and evaluating a neural 
network for binary classification. The use of TensorFlow and Keras allows for 
the creation of a flexible and efficient model. The incorporation of TensorBoard
provides valuable insights into the training process, helping to identify 



potential issues and track the model's progress over time.

 \section{Repairing Data for Fetus heart rate}
 

\section{Revolutionizing IoHT Based Monitoring: Low-Cost Fetal Cardiac Sensing 
via ESP8266 Node}

Over the past decade, the integration of Internet of Health Things (IoHT) 
technologies has profoundly reshaped healthcare delivery, particularly in the 
domains of real-time patient monitoring and telemedicine. Among the most 
impactful developments is the creation of smart body sensor network systems, 
which facilitate noninvasive health tracking, cloud-based data analytics, and 
patient-centric care.

In our recent research\cite{70}, we designed and implemented a low-cost wearable
fetal heart rate (FHR) monitoring system based on an ESP8266 microcontroller. 
The proposed platform, developed by our team, combines photoplethysmography 
(PPG), which is commonly found in pulse oximeters, with IoT-based wireless 
communication modules. The system enables real-time, continuous monitoring of 
both maternal and fetal cardiac parameters, and securely transmits data over 
IEEE 802.11 b/g/n wireless networks to a remote server for analysis and 
visualization.

With a total hardware cost of approximately \$10, the device offers a scalable 
solution suitable for both clinical and rural applications. It features 
integrated sensors for heart rate, temperature, and humidity, making it ideal 
for use during pregnancy, where fetal well-being must be monitored around the 
clock. A key advantage of our implementation is the minimal error rate, which is
less than 1\% when benchmarked against standard hospital-grade cardiotocograph 
systems.

Our system was rigorously tested in collaboration with medical professionals and
validated against a clinical gold standard. The results were disseminated 
through the publication titled Home Healthcare Technologies and Services: Heart 
Rate Monitoring System Using an MCU ESP8266 Node, presented at the 2022 
Panhellenic Conference on Electronics and Telecommunications (PACET)\cite{70}.

Importantly, the platform supports remote access to patient data through a cloud
dashboard, enabling healthcare professionals to receive alerts and trends in 
real-time. This feature is particularly beneficial in situations that require 
physical distancing, such as during the COVID-19 pandemic, where home-based 
monitoring is essential.

Furthermore, optimization of the firmware and the use of energy-efficient 
components contributed to a significant reduction in power consumption. These 
advances strengthen the practicality and sustainability of the solution, laying 
the groundwork for its broader adoption in future smart healthcare 
ecosystems\cite{67,68,69,70}.



Having established the hardware and sensing methodology, we now evaluate the 
system's performance using statistical tools such as the ROC curve.

\subsection{Smart Health Monitoring: Affordable and Adaptive Arduino UNO 
Platform}

The implementation of a smart health monitoring system is based on a cost 
effective modular development platform. Central to this platform is the widely 
accessible Arduino UNO Rev3 microcontroller, which is selected because of its 
affordability, versatility, and open source nature\cite{55}.

Arduino UNO Rev3 features 14 digital I/O pins, USB connectivity, and 
compatibility with a wide variety of shields, rendering it suitable for both 
novice users and advanced developers. In our design, the microcontroller was 
integrated with a photoplethysmography (PPG) sensor, cloud enabled communication
shield, and local LCD display interface. These components collectively allow 
real time data acquisition, cloud transmission, and user friendly visualization.

The LCD includes a brightness adjustment feature via a potentiometer, whereas a 
photo diode is employed as a visual alert mechanism for pulse detection, which 
is beneficial for users with visual or auditory limitations. Furthermore, the 
platform supports a detachable and replaceable power source, ensuring continuous
operation during outages and prolonged monitoring sessions.

This configuration not only achieves low power consumption and reduced 
operational costs, but also offers scalability and portability for personal and 
clinical use.

\subsection{Challenges of Building Neural Networks with Arduino uno 3 
development board}

Efforts to utilize the Arduino Uno 3 Development Board faced significant 
challenges due to its limited computational power. While the Arduino UNO 3 and 
ESP 8266 are useful for applications with moderate computational needs, they 
struggle with processing large data sets, such as ECG signals. This limitation 
hinders the construction of neural networks, underscoring the critical role of 
computational power in tackling modern computing challenges.
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